cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 51 results. Next

A342515 Number of strict partitions of n with constant (equal) first-quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 4, 5, 5, 6, 6, 8, 8, 9, 8, 9, 9, 11, 10, 13, 11, 12, 12, 13, 14, 14, 15, 15, 16, 18, 16, 17, 17, 19, 18, 20, 20, 22, 21, 21, 23, 23, 22, 24, 23, 24, 24, 27, 25, 26, 27, 27, 27, 28, 29, 31, 29, 30, 31, 32, 33, 35, 32, 35, 33, 35, 34, 35
Offset: 0

Views

Author

Gus Wiseman, Mar 19 2021

Keywords

Comments

Also the number of reversed strict partitions of n with constant (equal) first-quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the quotients of (6,3,1) are (1/2,1/3).

Examples

			The a(1) = 1 through a(15) = 9 partitions (A..F = 10..15):
  1   2   3    4    5    6    7     8    9    A    B    C    D     E     F
          21   31   32   42   43    53   54   64   65   75   76    86    87
                    41   51   52    62   63   73   74   84   85    95    96
                              61    71   72   82   83   93   94    A4    A5
                              421        81   91   92   A2   A3    B3    B4
                                                   A1   B1   B2    C2    C3
                                                             C1    D1    D2
                                                             931   842   E1
                                                                         8421
		

Crossrefs

The version for differences instead of quotients is A049980.
The non-strict ordered version is A342495.
The non-strict version is A342496.
The distinct instead of equal version is A342520.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A154402 counts partitions with adjacent parts x = 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A175342 counts compositions with equal differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]

A342496 Number of integer partitions of n with constant (equal) first quotients.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 6, 7, 7, 8, 7, 11, 9, 11, 12, 12, 10, 14, 12, 15, 16, 14, 13, 19, 15, 17, 17, 20, 16, 23, 19, 21, 20, 20, 22, 26, 21, 23, 25, 28, 22, 30, 24, 27, 29, 26, 25, 33, 29, 30, 29, 32, 28, 34, 31, 36, 34, 32, 31, 42
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition (12,6,3) has first quotients (1/2,1/2) so is counted under a(21).
The a(1) = 1 through a(9) = 7 partitions:
  1   2    3     4      5       6        7         8          9
      11   21    22     32      33       43        44         54
           111   31     41      42       52        53         63
                 1111   11111   51       61        62         72
                                222      421       71         81
                                111111   1111111   2222       333
                                                   11111111   111111111
		

Crossrefs

The version for differences instead of quotients is A049988.
The ordered version is A342495.
The distinct version is A342514.
The strict case is A342515.
The Heinz numbers of these partitions are A342522.
A000005 counts constant partitions.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]

Formula

a(n > 0) = (A342495(n) + A000005(n))/2.

A342522 Heinz numbers of integer partitions with constant (equal) first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 2093 are {4,6,9}, with first quotients (3/2,3/2), so 2093 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   30: {1,2,3}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A072774.
The version counting strict divisor chains is A169594.
For differences instead of quotients we have A325328 (count: A049988).
These partitions are counted by A342496 (strict: A342515, ordered: A342495).
The distinct instead of equal version is A342521.
A000005 count constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342086 counts strict chains of divisors with strictly increasing quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]

A329552 Smallest MM-number of a connected set of n sets.

Original entry on oeis.org

1, 2, 39, 195, 5655, 62205, 2674815
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
        1: {}
        2: {{}}
       39: {{1},{1,2}}
      195: {{1},{2},{1,2}}
     5655: {{1},{2},{1,2},{1,3}}
    62205: {{1},{2},{3},{1,2},{1,3}}
  2674815: {{1},{2},{3},{1,2},{1,3},{1,4}}
		

Crossrefs

MM-numbers of connected set-systems are A328514.
The weight of the system with MM-number n is A302242(n).
Connected numbers are A305078.
Maximum connected divisor is A327076.
BII-numbers of connected sets of sets are A326749.
The smallest BII-number of a connected set of n sets is A329625(n).
Allowing edges to have repeated vertices gives A329553.
Requiring the edges to form an antichain gives A329555.
The smallest MM-number of a set of n nonempty sets is A329557(n).
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    da=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&];
    Table[da[[Position[PrimeOmega/@da,n][[1,1]]]],{n,First[Split[Union[PrimeOmega/@da],#2==#1+1&]]}]

A329555 Smallest MM-number of a clutter (connected antichain) of n distinct sets.

Original entry on oeis.org

1, 2, 377, 16211, 761917
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
       1: {}
       2: {{}}
     377: {{1,2},{1,3}}
   16211: {{1,2},{1,3},{1,4}}
  761917: {{1,2},{1,3},{1,4},{2,3}}
		

Crossrefs

Spanning cutters of distinct sets are counted by A048143.
MM-numbers of connected weak-antichains are A329559.
MM-numbers of sets of sets are A302494.
The smallest BII-number of a clutter with n edges is A329627.
Not requiring the edges to form an antichain gives A329552.
Connected numbers are A305078.
Stable numbers are A316476.
Other MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
    Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]

A329558 Product of primes indexed by the first n squarefree numbers.

Original entry on oeis.org

1, 2, 6, 30, 330, 4290, 72930, 2114970, 65564070, 2688126870, 115589455410, 5432704404270, 320529559851930, 21475480510079310, 1567710077235789630, 123849096101627380770, 10279474976435072603910, 1038226972619942332994910, 113166740015573714296445190, 12787841621759829715498306470
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. Then a(n) is the smallest MM-number of a set of n sets.

Examples

			The sequence of terms together with their corresponding systems begins:
        1: {}
        2: {{}}
        6: {{},{1}}
       30: {{},{1},{2}}
      330: {{},{1},{2},{3}}
     4290: {{},{1},{2},{3},{1,2}}
    72930: {{},{1},{2},{3},{1,2},{4}}
  2114970: {{},{1},{2},{3},{1,2},{4},{1,3}}
		

Crossrefs

The smallest BII-number of a set of n sets is A000225(n).
MM-numbers of sets of sets are A302494.
The case without empty edges is A329557.
The case without singletons is A329556.
The case without empty edges or singletons is A329554.
The connected version is A329552.
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    sqvs=Select[Range[30],SquareFreeQ];
    Table[Times@@Prime/@Take[sqvs,k],{k,0,Length[sqvs]}]

Formula

a(n > 0) = 2 * A329557(n - 1).
a(n) = Product_{i = 1..n} prime(A005117(i)).

Extensions

a(19) from Jinyuan Wang, Feb 24 2020

A342514 Number of integer partitions of n with distinct first quotients.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 11, 14, 18, 24, 28, 35, 41, 52, 64, 81, 93, 115, 137, 157, 190, 225, 268, 313, 366, 430, 502, 587, 683, 790, 913, 1055, 1217, 1393, 1605, 1830, 2098, 2384, 2722, 3101, 3524, 4005, 4524, 5137, 5812, 6570, 7434, 8360, 9416, 10602, 11881
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2021

Keywords

Comments

Also the number of reversed integer partitions of n with distinct first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The partition (4,3,3,2,1) has first quotients (3/4,1,2/3,1/2) so is counted under a(13), but it has first differences (-1,0,-1,-1) so is not counted under A325325(13).
The a(1) = 1 through a(9) = 14 partitions:
  (1)  (2)   (3)   (4)    (5)    (6)    (7)     (8)     (9)
       (11)  (21)  (22)   (32)   (33)   (43)    (44)    (54)
                   (31)   (41)   (42)   (52)    (53)    (63)
                   (211)  (221)  (51)   (61)    (62)    (72)
                          (311)  (321)  (322)   (71)    (81)
                                 (411)  (331)   (332)   (432)
                                        (511)   (422)   (441)
                                        (3211)  (431)   (522)
                                                (521)   (531)
                                                (611)   (621)
                                                (3221)  (711)
                                                        (3321)
                                                        (4311)
                                                        (5211)
		

Crossrefs

The version for differences instead of quotients is A325325.
The ordered version is A342529.
The strict case is A342520.
The Heinz numbers of these partitions are A342521.
A000005 counts constant partitions.
A000009 counts strict partitions.
A000041 counts partitions.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with all adjacent parts x < 2y (strict: A342097).
A342098 counts partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]

A342492 Number of compositions of n with weakly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 26, 37, 52, 73, 95, 125, 163, 208, 261, 330, 407, 498, 607, 734, 881, 1056, 1250, 1480, 1738, 2029, 2359, 2742, 3160, 3635, 4169, 4760, 5414, 6151, 6957, 7861, 8858, 9952, 11148, 12483, 13934, 15526, 17267, 19173, 21252, 23535, 25991
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2021

Keywords

Comments

Also called log-concave-up compositions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (4,2,1,2,3) has first quotients (1/2,1/2,2,3/2) so is not counted under a(12), even though the first differences (-2,-1,1,1) are weakly increasing.
The a(1) = 1 through a(6) = 17 compositions:
  (1)  (2)    (3)      (4)        (5)          (6)
       (1,1)  (1,2)    (1,3)      (1,4)        (1,5)
              (2,1)    (2,2)      (2,3)        (2,4)
              (1,1,1)  (3,1)      (3,2)        (3,3)
                       (1,1,2)    (4,1)        (4,2)
                       (2,1,1)    (1,1,3)      (5,1)
                       (1,1,1,1)  (2,1,2)      (1,1,4)
                                  (3,1,1)      (2,1,3)
                                  (1,1,1,2)    (2,2,2)
                                  (2,1,1,1)    (3,1,2)
                                  (1,1,1,1,1)  (4,1,1)
                                               (1,1,1,3)
                                               (2,1,1,2)
                                               (3,1,1,1)
                                               (1,1,1,1,2)
                                               (2,1,1,1,1)
                                               (1,1,1,1,1,1)
		

Crossrefs

The weakly decreasing version is A069916.
The version for differences instead of quotients is A325546.
The strictly increasing version is A342493.
The unordered version is A342497, ranked by A342523.
The strict unordered version is A342516.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000929 counts partitions with all adjacent parts x >= 2y.
A001055 counts factorizations.
A002843 counts compositions with all adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Maple
    b:= proc(n, q, l) option remember; `if`(n=0, 1, add(
         `if`(q=0 or q>=l/j, b(n-j, l/j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 25 2021
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
    (* Second program: *)
    b[n_, q_, l_] := b[n, q, l] = If[n == 0, 1, Sum[
         If[q == 0 || q >= l/j, b[n - j, l/j, j], 0], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(21)-a(47) from Alois P. Heinz, Mar 25 2021

A342493 Number of compositions of n with strictly increasing first quotients.

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 11, 16, 22, 28, 39, 49, 61, 77, 93, 114, 140, 169, 198, 233, 276, 321, 381, 439, 509, 591, 678, 774, 883, 1007, 1147, 1300, 1465, 1641, 1845, 2068, 2317, 2590, 2881, 3193, 3549, 3928, 4341, 4793, 5282, 5813, 6401, 7027, 7699, 8432, 9221, 10076
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2021

Keywords

Comments

The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The composition (3,1,1,2) has first quotients (1/3,1,2) so is counted under a(7).
The a(1) = 1 through a(7) = 16 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)        (7)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)      (1,6)
              (2,1)  (2,2)    (2,3)    (2,4)      (2,5)
                     (3,1)    (3,2)    (3,3)      (3,4)
                     (1,1,2)  (4,1)    (4,2)      (4,3)
                     (2,1,1)  (1,1,3)  (5,1)      (5,2)
                              (2,1,2)  (1,1,4)    (6,1)
                              (3,1,1)  (2,1,3)    (1,1,5)
                                       (3,1,2)    (2,1,4)
                                       (4,1,1)    (2,2,3)
                                       (2,1,1,2)  (3,1,3)
                                                  (3,2,2)
                                                  (4,1,2)
                                                  (5,1,1)
                                                  (2,1,1,3)
                                                  (3,1,1,2)
		

Crossrefs

The version for differences instead of quotients is A325547.
The weakly increasing version is A342492.
The strictly decreasing version is A342494.
The unordered version is A342498, ranked by A342524.
The strict unordered version is A342517.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A274199 counts compositions with all adjacent parts x < 2y.

Programs

  • Maple
    b:= proc(n, q, l) option remember; `if`(n=0, 1, add(
         `if`(q=0 or q>l/j, b(n-j, l/j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..55);  # Alois P. Heinz, Mar 25 2021
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
    (* Second program: *)
    b[n_, q_, l_] := b[n, q, l] = If[n == 0, 1, Sum[
         If[q == 0 || q > l/j, b[n - j, l/j, j], 0], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 55] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Extensions

a(21)-a(51) from Alois P. Heinz, Mar 18 2021

A342520 Number of strict integer partitions of n with distinct first quotients.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 10, 12, 13, 16, 20, 25, 30, 37, 42, 50, 57, 65, 80, 93, 108, 127, 147, 170, 198, 225, 258, 297, 340, 385, 448, 499, 566, 647, 737, 832, 937, 1064, 1186, 1348, 1522, 1701, 1916, 2157, 2402, 2697, 3013, 3355, 3742, 4190, 4656, 5191
Offset: 0

Views

Author

Gus Wiseman, Mar 20 2021

Keywords

Comments

Also the number of reversed strict integer partitions of n with distinct first quotients.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The strict partition (12,10,5,2,1) has first quotients (5/6,1/2,2/5,1/2) so is not counted under a(30), even though the first differences (-2,-5,-3,-1) are distinct.
The a(1) = 1 through a(13) = 16 partitions (A..D = 10..13):
  1   2   3    4    5    6     7    8     9     A      B      C     D
          21   31   32   42    43   53    54    64     65     75    76
                    41   51    52   62    63    73     74     84    85
                         321   61   71    72    82     83     93    94
                                    431   81    91     92     A2    A3
                                    521   432   532    A1     B1    B2
                                          531   541    542    543   C1
                                          621   631    632    642   643
                                                721    641    651   652
                                                4321   731    732   742
                                                       821    741   751
                                                       5321   831   832
                                                              921   841
                                                                    A21
                                                                    5431
                                                                    7321
		

Crossrefs

The version for differences instead of quotients is A320347.
The non-strict version is A342514 (ranking: A342521).
The equal instead of distinct version is A342515.
The non-strict ordered version is A342529.
The version for strict divisor chains is A342530.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A342086 counts strict chains of divisors with strictly increasing quotients.
A342098 counts (strict) partitions with all adjacent parts x > 2y.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,30}]
Previous Showing 11-20 of 51 results. Next