cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A323304 Heinz numbers of integer partitions that cannot be arranged into a matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Comments

The first term of this sequence absent from A106543 is 144.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Select[Range[2,1000],Select[ptnmats[#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]

A323348 Number of integer partitions of n whose parts cannot be arranged into a (not necessarily square) matrix with equal row-sums and equal column-sums.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 6, 13, 17, 27, 36, 54, 66, 99, 128, 169, 221, 295, 367, 488, 610, 779, 993, 1253, 1525, 1955, 2426, 2986, 3684, 4563, 5519, 6840, 8298, 10097, 12298, 14874, 17716, 21635, 26002, 31105, 37081, 44581, 52916, 63259, 74852, 88703, 105543, 124752, 145740, 173522, 203999, 239737, 280424, 329929
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2019

Keywords

Examples

			The a(8) = 17 integer partitions:
  (53), (62), (71),
  (332), (422), (431), (521), (611),
  (3221), (4211), (5111),
  (22211), (32111), (41111),
  (221111), (311111),
  (2111111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    ptnmats[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS,facs[n],{2}]),SameQ@@Length/@#&];
    Table[Length[Select[IntegerPartitions[n],Select[ptnmats[Times@@Prime/@#],And[SameQ@@Total/@#,SameQ@@Total/@Transpose[#]]&]=={}&]],{n,10}]

Extensions

a(17)-a(53) from Chai Wah Wu, Jan 15 2019

A321699 MM-numbers of uniform regular multiset multisystems spanning an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 19, 27, 32, 49, 53, 64, 81, 113, 128, 131, 151, 161, 165, 169, 225, 243, 256, 311, 343, 361, 512, 719, 729, 1024, 1291, 1321, 1619, 1937, 1957, 2021, 2048, 2093, 2117, 2187, 2197, 2257, 2401, 2805, 2809, 3375, 3671, 4096, 6561
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is uniform if all parts have the same size, and regular if all vertices appear the same number of times. For example, {{1,1},{2,3},{2,3}} is uniform, regular, and spans an initial interval of positive integers, so its MM-number 15463 belongs to the sequence.

Examples

			The sequence of all uniform regular multiset multisystems spanning an initial interval of positive integers, together with their MM-numbers, begins:
    1: {}
    2: {{}}
    3: {{1}}
    4: {{},{}}
    7: {{1,1}}
    8: {{},{},{}}
    9: {{1},{1}}
   13: {{1,2}}
   15: {{1},{2}}
   16: {{},{},{},{}}
   19: {{1,1,1}}
   27: {{1},{1},{1}}
   32: {{},{},{},{},{}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   64: {{},{},{},{},{},{}}
   81: {{1},{1},{1},{1}}
  113: {{1,2,3}}
  128: {{},{},{},{},{},{},{}}
  131: {{1,1,1,1,1}}
  151: {{1,1,2,2}}
  161: {{1,1},{2,2}}
  165: {{1},{2},{3}}
  169: {{1,2},{1,2}}
  225: {{1},{1},{2},{2}}
  243: {{1},{1},{1},{1},{1}}
  256: {{},{},{},{},{},{},{},{}}
  311: {{1,1,1,1,1,1}}
  343: {{1,1},{1,1},{1,1}}
  361: {{1,1,1},{1,1,1}}
  512: {{},{},{},{},{},{},{},{},{}}
  719: {{1,1,1,1,1,1,1}}
  729: {{1},{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[normQ[primeMS/@primeMS[#]],SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]

A321725 Irregular triangle read by rows where T(n,k) is the number of d X d non-normal semi-magic squares with d = A027750(n,k) and sum of all entries equal to n.

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 3, 24, 1, 120, 1, 4, 21, 720, 1, 5040, 1, 5, 282, 40320, 1, 55, 362880, 1, 6, 6210, 3628800, 1, 39916800, 1, 7, 120, 2008, 202410, 479001600, 1, 6227020800, 1, 8, 9135630, 87178291200, 1, 231, 153040, 1307674368000, 1, 9, 10147
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A non-normal semi-magic square is a nonnegative integer square matrix with all row sums and column sums equal to d, for some d|n.

Examples

			Triangle begins:
   1
   1   2
   1   6
   1   3  24
   1 120
   1   4  21 720
The T(6,2) = 4 semi-magic squares (zeros not shown):
  [3  ] [2 1] [1 2] [  3]
  [  3] [1 2] [2 1] [3  ]
The T(6,3) = 21 semi-magic squares (zeros not shown):
  [2    ] [2    ] [2    ] [1 1  ] [1 1  ] [1 1  ] [1 1  ]
  [  2  ] [  1 1] [    2] [1 1  ] [1   1] [  1 1] [    2]
  [    2] [  1 1] [  2  ] [    2] [  1 1] [1   1] [1 1  ]
.
  [1   1] [1   1] [1   1] [1   1] [  2  ] [  2  ] [  2  ]
  [1 1  ] [1   1] [  2  ] [  1 1] [2    ] [1   1] [    2]
  [  1 1] [  2  ] [1   1] [1 1  ] [    2] [1   1] [2    ]
.
  [  1 1] [  1 1] [  1 1] [  1 1] [    2] [    2] [    2]
  [2    ] [1 1  ] [1   1] [  1 1] [2    ] [1 1  ] [  2  ]
  [  1 1] [1   1] [1 1  ] [2    ] [  2  ] [1 1  ] [2    ]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[k]==Union[Last/@#],SameQ@@Total/@prs2mat[#],SameQ@@Total/@Transpose[prs2mat[#]]]&]],{n,5},{k,Divisors[n]}]

Formula

T(n, A000005(n)) = n!. Sum_k T(n,k) = A321719(n). - Chai Wah Wu, Jan 15 2019

Extensions

a(15)-a(48) from Chai Wah Wu, Jan 15 2019
Edited by Peter Munn, Mar 05 2025

A322531 Heinz numbers of integer partitions whose parts all have the same number of prime factors (counted with or without multiplicity) and whose product of parts is a squarefree number.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 13, 15, 16, 17, 29, 31, 32, 33, 41, 43, 47, 51, 55, 59, 64, 67, 73, 79, 83, 85, 93, 101, 109, 113, 123, 127, 128, 137, 139, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 233, 241, 249, 255, 256, 257, 269, 271
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
All entries are themselves squarefree numbers (except the powers of 2).
The first odd term not in this sequence but in A302521 is 141, which is the MM-number (see A302242) of {{1},{2,3}}.

Examples

			The sequence of all integer partitions whose parts all have the same number of prime factors and whose product of parts is a squarefree number begins: (), (1), (2), (1,1), (3), (1,1,1), (5), (6), (3,2), (1,1,1,1), (7), (10), (11), (1,1,1,1,1), (5,2), (13), (14), (15), (7,2), (5,3), (17), (1,1,1,1,1,1).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[SameQ@@PrimeOmega/@primeMS[#],SquareFreeQ[Times@@primeMS[#]]]&]

A322703 Squarefree MM-numbers of strict uniform regular multiset systems spanning an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 7, 13, 15, 19, 53, 113, 131, 151, 161, 165, 311, 719, 1291, 1321, 1619, 1937, 1957, 2021, 2093, 2117, 2257, 2805, 3671, 6997, 8161, 10627, 13969, 13987, 14023, 15617, 17719, 17863, 20443, 22207, 22339, 38873, 79349, 84017, 86955, 180503, 202133
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is uniform if all parts have the same size, regular if all vertices appear the same number of times, and strict if there are no repeated parts. For example, {{1,1},{2,3},{2,3}} is uniform and regular but not strict, so its MM-number 15463 does not belong to the sequence. Note that the parts of parts such as {1,1} do not have to be distinct, only the multiset of parts.

Examples

			The sequence of all strict uniform regular multiset multisystems spanning an initial interval of positive integers, together with their MM-numbers, begins:
      1: {}
      2: {{}}
      3: {{1}}
      7: {{1,1}}
     13: {{1,2}}
     15: {{1},{2}}
     19: {{1,1,1}}
     53: {{1,1,1,1}}
    113: {{1,2,3}}
    131: {{1,1,1,1,1}}
    151: {{1,1,2,2}}
    161: {{1,1},{2,2}}
    165: {{1},{2},{3}}
    311: {{1,1,1,1,1,1}}
    719: {{1,1,1,1,1,1,1}}
   1291: {{1,2,3,4}}
   1321: {{1,1,1,2,2,2}}
   1619: {{1,1,1,1,1,1,1,1}}
   1937: {{1,2},{3,4}}
   1957: {{1,1,1},{2,2,2}}
   2021: {{1,4},{2,3}}
   2093: {{1,1},{1,2},{2,2}}
   2117: {{1,3},{2,4}}
   2257: {{1,1,2},{1,2,2}}
   2805: {{1},{2},{3},{4}}
   3671: {{1,1,1,1,1,1,1,1,1}}
   6997: {{1,1,2,2,3,3}}
   8161: {{1,1,1,1,1,1,1,1,1,1}}
  10627: {{1,1,1,1,2,2,2,2}}
  13969: {{1,2,2},{1,3,3}}
  13987: {{1,1,3},{2,2,3}}
  14023: {{1,1,2},{2,3,3}}
  15617: {{1,1},{2,2},{3,3}}
  17719: {{1,2},{1,3},{2,3}}
  17863: {{1,1,1,1,1,1,1,1,1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]

A322789 Irregular triangle read by rows where T(n,k) is the number of non-isomorphic uniform multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 4, 3, 2, 2, 4, 7, 6, 4, 2, 2, 4, 10, 8, 4, 3, 7, 3, 4, 12, 8, 4, 2, 2, 6, 32, 35, 31, 18, 6, 2, 2, 4, 21, 10, 4, 4, 47, 29, 4, 5, 49, 72, 19, 5, 2, 2, 6, 81, 170, 71, 24, 6, 2, 2, 6, 138, 478, 296, 32, 6, 4, 429, 76, 4, 4, 64, 14, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset partition is uniform if all parts have the same size.

Examples

			Triangle begins:
  1
  2  2
  2  2
  3  4  3
  2  2
  4  7  6  4
  2  2
  4 10  8  4
  3  7  3
  4 12  8  4
Non-isomorphic representatives of the multiset partitions counted under row 6:
{123456}           {112233}           {111222}           {111111}
{123}{456}         {112}{233}         {111}{222}         {111}{111}
{12}{34}{56}       {123}{123}         {112}{122}         {11}{11}{11}
{1}{2}{3}{4}{5}{6} {11}{22}{33}       {11}{12}{22}       {1}{1}{1}{1}{1}{1}
                   {11}{23}{23}       {12}{12}{12}
                   {12}{13}{23}       {1}{1}{1}{2}{2}{2}
                   {1}{1}{2}{2}{3}{3}
		

Crossrefs

Extensions

Terms a(28) and beyond from Andrew Howroyd, Feb 03 2022
Name edited by Peter Munn, Mar 05 2025

A322833 Squarefree MM-numbers of strict uniform regular multiset multisystems. Squarefree numbers whose prime indices all have the same number of prime factors counted with multiplicity, and such that the product of the same prime indices is a power of a squarefree number.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 41, 43, 47, 51, 53, 55, 59, 67, 73, 79, 83, 85, 93, 97, 101, 103, 109, 113, 123, 127, 131, 137, 139, 149, 151, 155, 157, 161, 163, 165, 167, 177, 179, 181, 187, 191, 199, 201, 205, 211, 227, 233, 241, 249, 255
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is uniform if all parts have the same size, regular if all vertices appear the same number of times, and strict if there are no repeated parts. For example, {{1,2,2},{1,3,3}} is uniform, regular, and strict, so its MM-number 13969 belongs to the sequence. Note that the parts of parts such as {1,2,2} do not have to be distinct, only the multiset of parts.

Examples

			The sequence of all strict uniform regular multiset multisystems, together with their MM-numbers, begins:
   1: {}           59: {{7}}         157: {{12}}        269: {{2,8}}
   2: {{}}         67: {{8}}         161: {{1,1},{2,2}} 271: {{1,10}}
   3: {{1}}        73: {{2,4}}       163: {{1,8}}       277: {{17}}
   5: {{2}}        79: {{1,5}}       165: {{1},{2},{3}} 283: {{18}}
   7: {{1,1}}      83: {{9}}         167: {{2,6}}       293: {{1,11}}
  11: {{3}}        85: {{2},{4}}     177: {{1},{7}}     295: {{2},{7}}
  13: {{1,2}}      93: {{1},{5}}     179: {{13}}        311: {{1,1,1,1,1,1}}
  15: {{1},{2}}    97: {{3,3}}       181: {{1,2,4}}     313: {{3,6}}
  17: {{4}}       101: {{1,6}}       187: {{3},{4}}     317: {{1,2,5}}
  19: {{1,1,1}}   103: {{2,2,2}}     191: {{14}}        327: {{1},{10}}
  23: {{2,2}}     109: {{10}}        199: {{1,9}}       331: {{19}}
  29: {{1,3}}     113: {{1,2,3}}     201: {{1},{8}}     335: {{2},{8}}
  31: {{5}}       123: {{1},{6}}     205: {{2},{6}}     341: {{3},{5}}
  33: {{1},{3}}   127: {{11}}        211: {{15}}        347: {{2,9}}
  41: {{6}}       131: {{1,1,1,1,1}} 227: {{4,4}}       349: {{1,3,4}}
  43: {{1,4}}     137: {{2,5}}       233: {{2,7}}       353: {{20}}
  47: {{2,3}}     139: {{1,7}}       241: {{16}}        367: {{21}}
  51: {{1},{4}}   149: {{3,4}}       249: {{1},{9}}     373: {{1,12}}
  53: {{1,1,1,1}} 151: {{1,1,2,2}}   255: {{1},{2},{4}} 381: {{1},{11}}
  55: {{2},{3}}   155: {{2},{5}}     257: {{3,5}}       389: {{4,5}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[SquareFreeQ[#],SameQ@@PrimeOmega/@primeMS[#],SameQ@@Last/@FactorInteger[Times@@primeMS[#]]]&]

A323764 Dirichlet self-convolution of the integer partition numbers A000041.

Original entry on oeis.org

1, 1, 4, 6, 14, 14, 34, 30, 64, 69, 112, 112, 228, 202, 330, 394, 575, 594, 956, 980, 1492, 1674, 2228, 2510, 3700, 3965, 5276, 6200, 8126, 9130, 12318, 13684, 17842, 20622, 25808, 29976, 38377, 43274, 53990, 62976, 77912, 89166, 110656, 126522, 154918, 179744
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of multiset partitions of constant multiset partitions of integer partitions of n.

Examples

			The a(4) = 14 multiset partitions of constant multiset partitions:
  ((1111))              ((22))      ((4))  ((31))  ((211))
  ((11)(11))            ((2)(2))
  ((11))((11))          ((2))((2))
  ((1)(1)(1)(1))
  ((1))((1)(1)(1))
  ((1)(1))((1)(1))
  ((1))((1))((1)(1))
  ((1))((1))((1))((1))
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[PartitionsP[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019

A323776 a(n) = Sum_{k = 1...n} binomial(k + 2^(n - k) - 1, k - 1).

Original entry on oeis.org

1, 3, 7, 16, 40, 119, 450, 2253, 15207, 139190, 1731703, 29335875, 677864041, 21400069232, 924419728471, 54716596051100, 4443400439075834, 495676372493566749, 76041424515817042402, 16060385520094706930608, 4674665948889147697184915
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Number of multiset partitions of integer partitions of 2^(n - 1) whose parts are constant and have equal sums.

Examples

			The a(1) = 1 through a(4) = 16 partitions of partitions:
  (1)  (2)     (4)           (8)
       (11)    (22)          (44)
       (1)(1)  (1111)        (2222)
               (2)(2)        (4)(4)
               (2)(11)       (4)(22)
               (11)(11)      (22)(22)
               (1)(1)(1)(1)  (4)(1111)
                             (11111111)
                             (22)(1111)
                             (1111)(1111)
                             (2)(2)(2)(2)
                             (2)(2)(2)(11)
                             (2)(2)(11)(11)
                             (2)(11)(11)(11)
                             (11)(11)(11)(11)
                             (1)(1)(1)(1)(1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k+2^(n-k)-1,k-1],{k,n}],{n,20}]
  • PARI
    a(n) = sum(k=1, n, binomial(k+2^(n-k)-1, k-1)); \\ Michel Marcus, Jan 28 2019
Previous Showing 31-40 of 46 results. Next