cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A377053 Antidiagonal-sums of the absolute value of the array A377051(n,k) = n-th term of k-th differences of powers of primes.

Original entry on oeis.org

1, 3, 4, 5, 6, 13, 24, 45, 80, 123, 174, 229, 382, 1219, 3591, 8849, 19288, 37899, 67442, 108323, 156054, 206733, 311525, 860955, 2710374, 7111657, 17080759, 38884849, 85124764, 180097856, 368321633, 726482493, 1377039690, 2496856437, 4306569569, 7016267449
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Comments

These are the row-sums of the absolute value of the triangle-version of A377051.

Examples

			The sixth antidiagonal of A377051 is (8, 1, -1, -2, -3, -4, -5), so a(6) = 24.
		

Crossrefs

The version for primes is A376681, noncomposites A376684, composites A377035.
For squarefree numbers we have A377040, nonsquarefree A377048.
This is the antidiagonal-sums of the absolute value of A377051.
The signed version is A377052.
For leaders we have A377054, for primes A007442 or A030016.
For first zero-positions we have A377055.
A version for partitions is A377056, cf. A175804, A053445, A281425, A320590.
A000040 lists the primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],{k,0,nn}];
    Total/@Abs[Table[t[[j,i-j+1]],{i,nn},{j,i}]]

A320591 Expansion of Product_{k>=1} (1 + x^k/(1 + x)^k).

Original entry on oeis.org

1, 1, 0, 1, -2, 4, -7, 11, -16, 23, -36, 65, -129, 256, -473, 772, -1028, 835, 776, -5755, 17562, -41750, 86678, -165145, 299949, -541837, 1020029, -2068203, 4509512, -10252952, 23465297, -52762788, 115160832, -243018459, 496094524, -982431070, 1894710043, -3574095362
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2018

Keywords

Comments

After the first term, this is the second term of the n-th differences of A000009, or column n=1 of A378622. - Gus Wiseman, Feb 03 2025

Crossrefs

The version for non-strict partitions is A320590, row n=1 of A175804.
Column n=1 (except first term) of A378622. See also A293467, A377285, A378970, A378971, A380412 (column n=0).
A000009 counts strict integer partitions, differences A087897, A378972.
A266232 gives zero-based binomial transform of strict partitions, differences A129519.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1 + x^k/(1 + x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
  • Maple
    seq(coeff(series(mul((1+x^k/(1+x)^k),k=1..n),x,n+1), x, n), n = 0 .. 37); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    nmax = 37; CoefficientList[Series[Product[(1 + x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] x^k/(k (1 + x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
    Prepend[Table[Differences[PartitionsQ/@Range[0,k+1],k][[2]],{k,0,30}],1] (* Gus Wiseman, Jan 29 2025 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1, m+2, (1 + x^k/(1 + x)^k))) \\ G. C. Greubel, Oct 29 2018
    

Formula

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*((1 + x)^k - x^k))).
G.f.: exp(Sum_{k>=1} A000593(k)*x^k/(k*(1 + x)^k)).
From Peter Bala, Dec 22 2020: (Start)
O.g.f.: Sum_{n >= 0} x^(n*(n+1)/2)/Product_{k = 1..n} ((1 + x)^k - x^k). Cf. A307548.
Conjectural o.g.f.: (1/2) * Sum_{n >= 0} x^(n*(n-1)/2)*(1 + x)^n/( Product_{k = 1..n} ( (1 + x)^k - x^k ) ). (End)
a(n+1) = Sum_{k=0..n} (-1)^(n-k) binomial(n,k) A000009(k+1). - Gus Wiseman, Feb 03 2025

A380412 First term of the n-th differences of the strict partition numbers. Inverse zero-based binomial transform of A000009.

Original entry on oeis.org

1, 0, 0, 1, -3, 7, -14, 25, -41, 64, -100, 165, -294, 550, -1023, 1795, -2823, 3658, -2882, -2873, 20435, -62185, 148863, -314008, 613957, -1155794, 2175823, -4244026, 8753538, -19006490, 42471787, -95234575, 210395407, -453413866, 949508390, -1931939460
Offset: 0

Views

Author

Gus Wiseman, Feb 03 2025

Keywords

Comments

Up to sign, same as A293467.

Crossrefs

The version for non-strict partitions is A281425, row n=0 of A175804.
Column n=0 of A378622.
A000009 counts strict integer partitions, differences A087897, A378972.
A266232 gives zero-based binomial transform of A000009, differences A129519.

Programs

  • Mathematica
    nn=10;Table[First[Differences[PartitionsQ/@Range[0,nn],n]],{n,0,nn}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) binomial(n,k) A000041(k).

A307548 Expansion of Product_{k>=1} (1 - (x/(1+x))^k).

Original entry on oeis.org

1, -1, 0, 1, -2, 4, -9, 21, -48, 105, -218, 429, -803, 1442, -2521, 4380, -7734, 14091, -26468, 50405, -94980, 172824, -296704, 467589, -644459, 678109, -177123, -1752141, 7003180, -19432494, 46778567, -104623822, 224830880, -473859273, 992825436, -2084921584
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2019

Keywords

Crossrefs

Convolution inverse of A320590.

Programs

  • Mathematica
    m = 35; CoefficientList[Series[Product[1 - (x/(1+x))^k, {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-(x/(1+x))^k))

Formula

O.g.f.: Sum_{n >= 0} (-1)^n * x^(n*(n+1)/2)/Product_{k = 1..n} ((1 + x)^k - x^k). Cf. A320591. - Peter Bala, Dec 22 2020

A379542 Second term of the n-th differences of the prime numbers.

Original entry on oeis.org

3, 2, 0, 2, -6, 14, -30, 62, -122, 220, -344, 412, -176, -944, 4112, -11414, 26254, -53724, 100710, -175034, 281660, -410896, 506846, -391550, -401486, 2962260, -9621128, 24977308, -57407998, 120867310, -236098336, 428880422, -719991244, 1096219280
Offset: 0

Views

Author

Gus Wiseman, Jan 12 2025

Keywords

Comments

Also the inverse zero-based binomial transform of the odd prime numbers.

Crossrefs

For all primes (not just odd) we have A007442.
Including 1 in the primes gives A030016.
Column n=2 of A095195.
The version for partitions is A320590 (first column A281425), see A175804, A053445.
For nonprime instead of prime we have A377036, see A377034-A377037.
Arrays of differences: A095195, A376682, A377033, A377038, A377046, A377051.
A000040 lists the primes, differences A001223, A036263.
A002808 lists the composite numbers, differences A073783, A073445.
A008578 lists the noncomposite numbers, differences A075526.

Programs

  • Mathematica
    nn=40;Table[Differences[Prime[Range[nn+2]],n][[2]],{n,0,nn}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * prime(k+2)); \\ Michel Marcus, Jan 12 2025

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * prime(k+2).
Previous Showing 11-15 of 15 results.