cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A371734 Maximal length of a factorization of n into factors > 1 all having different sums of prime indices.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Sum of prime indices is given by A056239.
Factorizations into factors > 1 all having different sums of prime indices are counted by A321469.

Examples

			The factorizations of 90 of this type are (2*3*15), (2*5*9), (2*45), (3*30), (5*18), (6*15), (90), so a(90) = 3.
		

Crossrefs

For set partitions of binary indices we have A000120, same sums A371735.
Positions of 1's are A000430.
Positions of terms > 1 are A080257.
Factorizations of this type are counted by A321469, same sums A321455.
For same instead of different sums we have A371733.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Table[Max[Length/@Select[facs[n],UnsameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_different_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == #facs));
    A371734(n, m=n, facs=List([])) = if(1==n, if(all_have_different_sum_of_pis(facs),#facs,0), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s = max(s,A371734(n/d, d, newfacs)))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A371839 Number of integer partitions of n with biquanimous multiplicities.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 22, 29, 38, 52, 66, 88, 114, 147, 186, 245, 302, 389, 486, 613, 757, 960, 1172, 1466, 1790, 2220, 2695, 3332, 4013, 4926, 5938, 7228, 8660, 10519, 12545, 15151, 18041, 21663, 25701, 30774, 36361, 43359, 51149, 60720, 71374
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is counted under a(10).
The a(0) = 1 through a(10) = 11 partitions:
  ()  .  .  (21)  (31)  (32)  (42)    (43)    (53)    (54)      (64)
                        (41)  (51)    (52)    (62)    (63)      (73)
                              (2211)  (61)    (71)    (72)      (82)
                                      (3211)  (3221)  (81)      (91)
                                              (3311)  (3321)    (3322)
                                              (4211)  (4221)    (4321)
                                                      (4311)    (4411)
                                                      (5211)    (5221)
                                                      (222111)  (5311)
                                                                (6211)
                                                                (322111)
		

Crossrefs

For parts instead of multiplicities we have A002219 aerated, ranks A357976.
These partitions have Heinz numbers A371781.
The complement for parts instead of multiplicities is counted by A371795, ranks A371731, bisections A006827, A058695.
The complement is counted by A371840, ranks A371782.
A237258 = biquanimous strict partitions, ranks A357854, complement A371794.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371783 counts k-quanimous partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n], biqQ[Length/@Split[#]]&]],{n,0,30}]

A371840 Number of integer partitions of n with non-biquanimous multiplicities.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 8, 11, 16, 21, 31, 40, 55, 72, 97, 124, 165, 209, 271, 343, 441, 547, 700, 866, 1089, 1345, 1679, 2050, 2546, 3099, 3814, 4622, 5654, 6811, 8297, 9957, 12039, 14409, 17355, 20666, 24793, 29432, 35133, 41598, 49474, 58360, 69197, 81395, 96124
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The partition y = (6,2,1,1) has multiplicities (1,1,2), which are biquanimous because we have the partition ((1,1),(2)), so y is not counted under a(10).
The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (321)     (421)      (422)
                            (11111)  (411)     (511)      (431)
                                     (3111)    (2221)     (521)
                                     (21111)   (4111)     (611)
                                     (111111)  (22111)    (2222)
                                               (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The complement for parts is counted by A002219 aerated, ranks A357976.
These partitions have Heinz numbers A371782.
For parts we have A371795, ranks A371731, bisections A006827, A058695.
The complement is counted by A371839, ranks A371781.
A237258 = biquanimous strict partitions, ranks A357854, complement A371794.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371783 counts k-quanimous partitions.
A371791 counts biquanimous sets, differences A232466.
A371792 counts non-biquanimous sets, differences A371793.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[IntegerPartitions[n], !biqQ[Length/@Split[#]]&]],{n,0,30}]

A371738 Numbers with non-quanimous binary indices. Numbers whose binary indices have only one set partition with all equal block-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 48, 50, 52, 53, 55, 56, 57, 58, 61, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 83, 84, 86, 88, 89, 91, 92
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of 165 are {1,3,6,8}, with qualifying set partitions {{1,8},{3,6}}, and {{1,3,6,8}}, so 165 is not in the sequence.
The terms together with their binary expansions and binary indices begin:
   1:     1 ~ {1}
   2:    10 ~ {2}
   3:    11 ~ {1,2}
   4:   100 ~ {3}
   5:   101 ~ {1,3}
   6:   110 ~ {2,3}
   8:  1000 ~ {4}
   9:  1001 ~ {1,4}
  10:  1010 ~ {2,4}
  11:  1011 ~ {1,2,4}
  12:  1100 ~ {3,4}
  14:  1110 ~ {2,3,4}
  16: 10000 ~ {5}
  17: 10001 ~ {1,5}
  18: 10010 ~ {2,5}
  19: 10011 ~ {1,2,5}
  20: 10100 ~ {3,5}
  21: 10101 ~ {1,3,5}
  23: 10111 ~ {1,2,3,5}
		

Crossrefs

Set partitions with all equal block-sums are counted by A035470.
Positions of 1's in A336137 and A371735.
The complement is A371784.
A000110 counts set partitions.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Select[Range[100],Length[Select[sps[bix[#]],SameQ@@Total/@#&]]==1&]

A371784 Numbers with quanimous binary indices. Numbers whose binary indices can be partitioned in more than one way into blocks with the same sum.

Original entry on oeis.org

7, 13, 15, 22, 25, 27, 30, 31, 39, 42, 45, 47, 49, 51, 54, 59, 60, 62, 63, 75, 76, 82, 85, 87, 90, 93, 94, 95, 97, 99, 102, 107, 108, 109, 110, 115, 117, 119, 120, 122, 125, 126, 127, 141, 143, 147, 148, 153, 155, 158, 162, 165, 167, 170, 173, 175, 179, 180
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of 165 are {1,3,6,8}, with qualifying set partitions {{1,8},{3,6}}, and {{1,3,6,8}}, so 165 is in the sequence.
The terms together with their binary expansions and binary indices begin:
   7:     111 ~ {1,2,3}
  13:    1101 ~ {1,3,4}
  15:    1111 ~ {1,2,3,4}
  22:   10110 ~ {2,3,5}
  25:   11001 ~ {1,4,5}
  27:   11011 ~ {1,2,4,5}
  30:   11110 ~ {2,3,4,5}
  31:   11111 ~ {1,2,3,4,5}
  39:  100111 ~ {1,2,3,6}
  42:  101010 ~ {2,4,6}
  45:  101101 ~ {1,3,4,6}
  47:  101111 ~ {1,2,3,4,6}
  49:  110001 ~ {1,5,6}
  51:  110011 ~ {1,2,5,6}
  54:  110110 ~ {2,3,5,6}
  59:  111011 ~ {1,2,4,5,6}
  60:  111100 ~ {3,4,5,6}
  62:  111110 ~ {2,3,4,5,6}
  63:  111111 ~ {1,2,3,4,5,6}
		

Crossrefs

Set partitions with all equal block-sums are counted by A035470.
Positions of terms > 1 in A336137 and A371735.
The complement is A371738.
A000110 counts set partitions.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Select[Range[100],Length[Select[sps[bix[#]],SameQ@@Total/@#&]]>1&]

A371954 Triangle read by rows where T(n,k) is the number of integer partitions of n that can be partitioned into k multisets with equal sums (k-quanimous).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 5, 3, 0, 1, 0, 7, 0, 0, 0, 1, 0, 11, 6, 4, 0, 0, 1, 0, 15, 0, 0, 0, 0, 0, 1, 0, 22, 14, 0, 5, 0, 0, 0, 1, 0, 30, 0, 10, 0, 0, 0, 0, 0, 1, 0, 42, 25, 0, 0, 6, 0, 0, 0, 0, 1, 0, 56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 77, 53, 30, 15, 0, 7, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2024

Keywords

Comments

A finite multiset of numbers is defined to be k-quanimous iff it can be partitioned into k multisets with equal sums.

Examples

			Triangle begins:
  1
  0  1
  0  2  1
  0  3  0  1
  0  5  3  0  1
  0  7  0  0  0  1
  0 11  6  4  0  0  1
  0 15  0  0  0  0  0  1
  0 22 14  0  5  0  0  0  1
  0 30  0 10  0  0  0  0  0  1
  0 42 25  0  0  6  0  0  0  0  1
  0 56  0  0  0  0  0  0  0  0  0  1
  0 77 53 30 15  0  7  0  0  0  0  0  1
Row n = 6 counts the following partitions:
  .  (6)       (33)      (222)     .  .  (111111)
     (51)      (321)     (2211)
     (42)      (3111)    (21111)
     (411)     (2211)    (111111)
     (33)      (21111)
     (321)     (111111)
     (3111)
     (222)
     (2211)
     (21111)
     (111111)
		

Crossrefs

Row n has A000005(n) positive entries.
Column k = 1 is A000041.
Column k = 2 is A002219 (aerated), ranks A357976.
Column k = 3 is A002220 (aerated), ranks A371955.
Removing all zeros gives A371783.
Row sums are A372121.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371789 counts non-quanimous sets, complement A371796.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[n], Select[facs[Times@@Prime/@#], Length[#]==k&&SameQ@@hwt/@#&]!={}&]],{n,0,10},{k,0,n}]

A372122 Number of strict triquanimous partitions of 3n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 4, 5, 13, 18, 36, 51, 93, 132, 229, 315, 516, 735, 1134, 1575, 2407, 3309, 4878, 6710, 9690, 13168, 18744, 25114, 35050, 47210, 64503, 85573, 116445, 153328, 205367, 269383, 356668, 464268, 610644, 788274, 1026330, 1321017, 1704309, 2176054
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2024

Keywords

Comments

A finite multiset of numbers is defined to be triquanimous iff it can be partitioned into three multisets with equal sums. Triquanimous partitions are counted by A002220 and ranked by A371955.

Examples

			The partition (11,7,5,4,3,2,1) has qualifying set partitions {{11},{4,7},{1,2,3,5}} and {{11},{1,3,7},{2,4,5}} so is counted under a(11).
The a(5) = 1 through a(9) = 13 partitions:
  (5,4,3,2,1)  (6,5,4,2,1)  (7,5,4,3,2)    (8,6,5,3,2)    (9,6,5,4,3)
                            (7,6,4,3,1)    (8,7,5,3,1)    (9,7,5,4,2)
                            (7,6,5,2,1)    (8,7,6,2,1)    (9,7,6,3,2)
                            (6,5,4,3,2,1)  (7,6,5,3,2,1)  (9,8,5,4,1)
                                           (8,6,4,3,2,1)  (9,8,6,3,1)
                                                          (9,8,7,2,1)
                                                          (7,6,5,4,3,2)
                                                          (8,6,5,4,3,1)
                                                          (8,7,5,4,2,1)
                                                          (8,7,6,3,2,1)
                                                          (9,6,5,4,2,1)
                                                          (9,7,5,3,2,1)
                                                          (9,8,4,3,2,1)
		

Crossrefs

The non-strict biquanimous version is A002219, ranks A357976.
The non-strict version is A002220, ranks A371955.
The biquanimous version is A237258, ranks A357854.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454, strict A371737.
A371783 counts k-quanimous partitions.
A371795 counts non-biquanimous partitions, even case A006827, ranks A371731.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Length[Select[IntegerPartitions[3n], UnsameQ@@#&&Select[facs[Times@@Prime/@#], Length[#]==3&&SameQ@@hwt/@#&]!={}&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 30 2025

A381872 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into blocks having a common sum.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2025

Keywords

Comments

First differs from A321455 at a(144) = 4, A321455(144) = 3.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 144 are {1,1,1,1,2,2}, with the following 4 multiset partitions having common block sum:
  {{1,1,1,1,2,2}}
  {{2,2},{1,1,1,1}}
  {{1,1,2},{1,1,2}}
  {{2},{2},{1,1},{1,1}}
with sums: 8, 4, 4, 2, of which 3 are distinct, so a(144) = 3.
The prime indices of 1296 are {1,1,1,1,2,2,2,2}, with the following 7 multiset partitions having common block sum:
  {{1,1,1,1,2,2,2,2}}
  {{2,2,2},{1,1,1,1,2}}
  {{1,1,2,2},{1,1,2,2}}
  {{2,2},{2,2},{1,1,1,1}}
  {{2,2},{1,1,2},{1,1,2}}
  {{1,2},{1,2},{1,2},{1,2}}
  {{2},{2},{2},{2},{1,1},{1,1}}
with sums: 12, 6, 6, 4, 4, 3, 2, of which 5 are distinct, so a(1296) = 5.
		

Crossrefs

With equal blocks instead of sums we have A089723.
Without equal sums we have A317141, before sums A001055, lower A300383.
Positions of terms > 1 are A321454.
Before taking sums we had A321455.
With distinct instead of equal sums we have A381637, before sums A321469.
A000041 counts integer partitions, strict A000009, constant A000005.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For sets of constant multisets (A050361) see A381715.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],SameQ@@Total/@#&]]],{n,100}]

A371732 Numbers n such that each binary index k (from row n of A048793) has the same sum of binary indices A029931(k).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 32, 64, 128, 144, 256, 288, 512, 576, 1024, 2048, 3072, 4096, 8192, 16384, 32768, 32800, 33024, 33056, 65536, 65600, 66048, 66112, 131072, 132096, 133120, 134144, 262144, 266240, 524288, 528384, 786432, 790528, 1048576, 1056768, 2097152
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Examples

			The terms together with their binary expansions and binary indices begin:
        1:                1 ~ {1}
        2:               10 ~ {2}
        4:              100 ~ {3}
        8:             1000 ~ {4}
       12:             1100 ~ {3,4}
       16:            10000 ~ {5}
       32:           100000 ~ {6}
       64:          1000000 ~ {7}
      128:         10000000 ~ {8}
      144:         10010000 ~ {5,8}
      256:        100000000 ~ {9}
      288:        100100000 ~ {6,9}
      512:       1000000000 ~ {10}
      576:       1001000000 ~ {7,10}
     1024:      10000000000 ~ {11}
     2048:     100000000000 ~ {12}
     3072:     110000000000 ~ {11,12}
     4096:    1000000000000 ~ {13}
     8192:   10000000000000 ~ {14}
    16384:  100000000000000 ~ {15}
    32768: 1000000000000000 ~ {16}
    32800: 1000000000100000 ~ {6,16}
		

Crossrefs

For prime instead of binary indices we have A326534.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A321142 and A371794 count non-biquanimous strict partitions.
A321452 counts quanimous partitions, ranks A321454.
A326031 gives weight of the set-system with BII-number n.
A357976 ranks the biquanimous partitions counted by A002219 aerated.
A371731 ranks the non-biquanimous partitions counted by A371795, A006827.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[1000],SameQ@@Total/@bix/@bix[#]&]
Previous Showing 21-29 of 29 results.