A321624
The Riordan square of the Lucas numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 4, 10, 7, 1, 7, 24, 26, 10, 1, 11, 49, 77, 51, 13, 1, 18, 98, 200, 190, 85, 16, 1, 29, 187, 473, 595, 390, 128, 19, 1, 47, 350, 1056, 1658, 1450, 704, 180, 22, 1, 76, 642, 2253, 4255, 4688, 3062, 1159, 241, 25, 1
Offset: 0
[0] [ 1]
[1] [ 1, 1]
[2] [ 3, 4, 1]
[3] [ 4, 10, 7, 1]
[4] [ 7, 24, 26, 10, 1]
[5] [ 11, 49, 77, 51, 13, 1]
[6] [ 18, 98, 200, 190, 85, 16, 1]
[7] [ 29, 187, 473, 595, 390, 128, 19, 1]
[8] [ 47, 350, 1056, 1658, 1450, 704, 180, 22, 1]
[9] [ 76, 642, 2253, 4255, 4688, 3062, 1159, 241, 25, 1]
-
# The function RiordanSquare is defined in A321620.
Lucas := 1 + x*(1 + 2*x)/(1 - x - x^2); RiordanSquare(Lucas, 10);
-
(* The function RiordanSquare is defined in A321620. *)
Lucas = 1 + x*(1 + 2*x)/(1 - x - x^2);
RiordanSquare[Lucas, 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
# uses[riordan_square from A321620]
riordan_square(1 + x*(1 + 2*x)/(1 - x - x^2), 10)
A321625
The Riordan square of the swinging factorial (A056040), triangle read by rows, T(n, k) for 0 <= k<= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 10, 5, 1, 6, 22, 22, 7, 1, 30, 66, 66, 38, 9, 1, 20, 140, 218, 146, 58, 11, 1, 140, 372, 574, 542, 270, 82, 13, 1, 70, 826, 1680, 1708, 1134, 446, 110, 15, 1, 630, 1930, 4156, 5432, 4126, 2106, 682, 142, 17, 1
Offset: 0
[0] [ 1]
[1] [ 1, 1]
[2] [ 2, 3, 1]
[3] [ 6, 10, 5, 1]
[4] [ 6, 22, 22, 7, 1]
[5] [ 30, 66, 66, 38, 9, 1]
[6] [ 20, 140, 218, 146, 58, 11, 1]
[7] [ 140, 372, 574, 542, 270, 82, 13, 1]
[8] [ 70, 826, 1680, 1708, 1134, 446, 110, 15, 1]
[9] [ 630, 1930, 4156, 5432, 4126, 2106, 682, 142, 17, 1]
-
# The function RiordanSquare is defined in A321620.
SwingingFactorial := (1 + x/(1 - 4*x^2))/sqrt(1 - 4*x^2);
RiordanSquare(SwingingFactorial, 10);
-
(* The function RiordanSquare is defined in A321620. *)
SwingingFactorial = (1 + x/(1 - 4*x^2))/Sqrt[1 - 4*x^2];
RiordanSquare[SwingingFactorial, 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
# uses[riordan_square from A321620]
riordan_square((1 + x/(1 - 4*x^2))/sqrt(1 - 4*x^2), 10)
A321627
The Riordan square of the double factorial of odd numbers. Triangle T(n, k), 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 15, 21, 7, 1, 105, 144, 48, 10, 1, 945, 1245, 372, 84, 13, 1, 10395, 13140, 3357, 726, 129, 16, 1, 135135, 164745, 35415, 6873, 1233, 183, 19, 1, 2027025, 2399040, 434520, 73116, 12306, 1920, 246, 22, 1
Offset: 0
Triangle starts:
[0][ 1]
[1][ 1, 1]
[2][ 3, 4, 1]
[3][ 15, 21, 7, 1]
[4][ 105, 144, 48, 10, 1]
[5][ 945, 1245, 372, 84, 13, 1]
[6][ 10395, 13140, 3357, 726, 129, 16, 1]
[7][135135, 164745, 35415, 6873, 1233, 183, 19, 1]
First column are the double factorial of odd numbers
A001147.
Second column is number of singletons in pair-partitions
A233481.
-
# The function RiordanSquare is defined in A321620.
cf := proc(dim) local k, m; m := 1;
for k from dim by -1 to 1 do m := 1 - k*x/m od;
1/m end: RiordanSquare(cf(9), 9);
-
(* The function RiordanSquare is defined in A321620. *)
cf[dim_] := Module[{k, m=1}, For[k=dim, k >= 1, k--, m = 1 - k*x/m]; 1/m];
RiordanSquare[cf[9], 9] (* Jean-François Alcover, Jun 15 2019, from Maple *)
A322944
Coefficients of a family of orthogonal polynomials. Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 6, 1, 6, 38, 15, 1, 24, 272, 188, 28, 1, 120, 2200, 2340, 580, 45, 1, 720, 19920, 30280, 11040, 1390, 66, 1, 5040, 199920, 413560, 206920, 37450, 2842, 91, 1, 40320, 2204160, 5989760, 3931200, 955920, 102816, 5208, 120, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 2, 6, 1;
[3] 6, 38, 15, 1;
[4] 24, 272, 188, 28, 1;
[5] 120, 2200, 2340, 580, 45, 1;
[6] 720, 19920, 30280, 11040, 1390, 66, 1;
[7] 5040, 199920, 413560, 206920, 37450, 2842, 91, 1;
Production matrix starts:
1;
1, 1;
3, 5, 1;
6, 18, 9, 1;
6, 42, 45, 13, 1;
0, 48, 132, 84, 17, 1;
0, 0, 180, 300, 135, 21, 1;
0, 0, 0, 480, 570, 198, 25, 1;
A321966 (m=2), this sequence (m=3).
-
P := proc(n) option remember; local a, b, c, d;
a := n -> 4*n-3; b := n -> 3*(n-1)*(2*n-3);
c := n -> (n-1)*(n-2)*(4*n-9); d := n -> (n-2)*(n-1)*(n-3)^2;
if n = 0 then return 1 fi;
if n = 1 then return x + 1 fi;
if n = 2 then return x^2 + 6*x + 2 fi;
if n = 3 then return x^3 + 15*x^2 + 38*x + 6 fi;
expand((x+a(n))*P(n-1) - b(n)*P(n-2) + c(n)*P(n-3) - d(n)*P(n-4)) end:
seq(print(P(n)), n=0..9); # Computes the polynomials.
-
a[n_] := 4n - 3;
b[n_] := 3(n - 1)(2n - 3);
c[n_] := (n - 1)(n - 2)(4n - 9);
d[n_] := (n - 2)(n - 1)(n - 3)^2;
P[n_] := P[n] = Switch[n, 0, 1, 1, x + 1, 2, x^2 + 6x + 2, 3, x^3 + 15x^2 + 38x + 6, _, Expand[(x + a[n]) P[n - 1] - b[n] P[n - 2] + c[n] P[n - 3] - d[n] P[n - 4]]];
Table[CoefficientList[P[n], x], {n, 0, 9}] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
# uses[riordan_square from A321620]
R = riordan_square((1 - 3*x)^(-1/3), 9, True).inverse()
for n in (0..8): print([(-1)^(n-k)*c for (k, c) in enumerate(R.row(n)[:n+1])])
A236376
Riordan array ((1-x+x^2)/(1-x)^2, x/(1-x)^2).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 7, 5, 1, 4, 14, 16, 7, 1, 5, 25, 41, 29, 9, 1, 6, 41, 91, 92, 46, 11, 1, 7, 63, 182, 246, 175, 67, 13, 1, 8, 92, 336, 582, 550, 298, 92, 15, 1, 9, 129, 582, 1254, 1507, 1079, 469, 121, 17, 1, 10, 175, 957, 2508, 3718, 3367, 1925, 696, 154
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
3, 7, 5, 1;
4, 14, 16, 7, 1;
5, 25, 41, 29, 9, 1;
6, 41, 91, 92, 46, 11, 1;
7, 63, 182, 246, 175, 67, 13, 1;
-
# The function RiordanSquare is defined in A321620.
RiordanSquare(1+x/(1-x)^2, 8); # Peter Luschny, Mar 06 2022
-
CoefficientList[#, y] & /@
CoefficientList[
Series[(1 - x + x^2)/(1 - 2*x - x*y + x^2), {x, 0, 12}], x] (* Wouter Meeussen, Jan 25 2014 *)
A285072
Triangle read by rows: coefficients of the Laplacian polynomial of the n-path graph P_n.
Original entry on oeis.org
0, -1, 0, -2, 1, 0, -3, 4, -1, 0, -4, 10, -6, 1, 0, -5, 20, -21, 8, -1, 0, -6, 35, -56, 36, -10, 1, 0, -7, 56, -126, 120, -55, 12, -1, 0, -8, 84, -252, 330, -220, 78, -14, 1, 0, -9, 120, -462, 792, -715, 364, -105, 16, -1, 0, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1
Offset: 1
Table starts:
0
-1 0
-2 1 0
-3 4 -1 0
-4 10 -6 1 0
-5 20 -21 8 -1 0
-6 35 -56 36 -10 1 0
-7 56 -126 120 -55 12 -1 0
-8 84 -252 330 -220 78 -14 1 0
-9 120 -462 792 -715 364 -105 16 -1 0
Cf.
A053122 (version lacking row-ending 0's and with differing signs).
-
S := proc(n, k) option remember;
if n <= k then 0 elif k = 0 then (-1)^n*n
else S(n-1, k-1) - S(n-2, k) - 2*S(n-1, k) fi end:
T := (n, k) -> (-1)^(n+1)*S(n, k):
seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Apr 03 2020
-
CoefficientList[Table[CharacteristicPolynomial[KirchhoffMatrix[PathGraph[Range[n]]], x], {n, 10}], x] // Flatten
CoefficientList[LinearRecurrence[{2 - x, -1}, {-x, (-2 + x) x}, 10], x] // Flatten
CoefficientList[Table[(-1)^(n + 1) x^(1/2) ChebyshevU[2 n - 1, -Sqrt[x]/2], {n, 10}], x] // Flatten
CoefficientList[Table[(2^-n ((2 - Sqrt[-4 + x] Sqrt[x] - x)^n - (2 + Sqrt[-4 + x] Sqrt[x] - x)^n))/Sqrt[(-4 + x)/x], {n, 10}] // Expand // FullSimplify, x] // Flatten
T[n_,k_]:=(-1)^(k+1)*Binomial[n+k,2*k+1];Flatten[Table[T[n,k],{n,0,10},{k,0,n}]] (* Detlef Meya, Oct 09 2023 *)
-
# uses[riordan_square from A321620]
# Returns the triangle as a matrix.
riordan_square(-x/(1 - x)^2, 9) # Peter Luschny, Apr 03 2020
Original entry on oeis.org
1, 2, 8, 22, 68, 202, 608, 1822, 5468, 16402, 49208, 147622, 442868, 1328602, 3985808, 11957422, 35872268, 107616802, 322850408, 968551222, 2905653668, 8716961002, 26150883008, 78452649022, 235357947068, 706073841202, 2118221523608, 6354664570822, 19063993712468
Offset: 0
Original entry on oeis.org
1, 4, 20, 108, 604, 3444, 19876, 115644, 676748, 3977316, 23451700, 138634764, 821221692, 4872734676, 28952250564, 172222729308, 1025461169772, 6110912705220, 36441840179284, 217450403367852, 1298228971572764, 7754336590794804, 46335720234364900
Offset: 0
-
(* The function RiordanSquare is defined in A321620. *)
LargeSchröder = (1 - x - Sqrt[1 - 6x + x^2])/(2x);
M = RiordanSquare[LargeSchröder, 23]; Map[Total, M]
(* Alternative: *)
CoefficientList[Series[1/(Sqrt[1-6x+x^2]-x),{x,0,22}],x] (* Stefano Spezia, Feb 05 2020 *)
A321621
The Riordan square of the Motzkin numbers, triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 9, 21, 18, 7, 1, 21, 55, 58, 32, 9, 1, 51, 145, 177, 123, 50, 11, 1, 127, 385, 525, 431, 224, 72, 13, 1, 323, 1030, 1532, 1429, 889, 369, 98, 15, 1, 835, 2775, 4428, 4572, 3269, 1639, 566, 128, 17, 1
Offset: 0
[0][ 1]
[1][ 1, 1]
[2][ 2, 3, 1]
[3][ 4, 8, 5, 1]
[4][ 9, 21, 18, 7, 1]
[5][ 21, 55, 58, 32, 9, 1]
[6][ 51, 145, 177, 123, 50, 11, 1]
[7][ 127, 385, 525, 431, 224, 72, 13, 1]
[8][ 323, 1030, 1532, 1429, 889, 369, 98, 15, 1]
[9][ 835, 2775, 4428, 4572, 3269, 1639, 566, 128, 17, 1]
-
# The function RiordanSquare is defined in A321620.
Motzkin := (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2); RiordanSquare(Motzkin, 10);
-
(* The function RiordanSquare is defined in A321620. *)
Motzkin = (1 - x - Sqrt[1 - 2 x - 3 x^2])/(2 x^2);
M = RiordanSquare[Motzkin, 10];
M // Flatten (* Jean-François Alcover, Nov 24 2018 *)
-
# uses[riordan_square from A321620]
riordan_square((1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2), 10)
A321622
The Riordan square of the Fine numbers, triangle read by rows, T(n, k) for 0 <= k<= n.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 6, 10, 7, 3, 1, 1, 18, 31, 19, 10, 4, 1, 1, 57, 97, 61, 29, 13, 5, 1, 1, 186, 316, 196, 96, 40, 16, 6, 1, 1, 622, 1054, 652, 316, 136, 52, 19, 7, 1, 1, 2120, 3586, 2210, 1072, 458, 181, 65, 22, 8, 1, 1
Offset: 0
[0] [ 1]
[1] [ 1, 1]
[2] [ 0, 1, 1]
[3] [ 1, 1, 1, 1]
[4] [ 2, 4, 2, 1, 1]
[5] [ 6, 10, 7, 3, 1, 1]
[6] [ 18, 31, 19, 10, 4, 1, 1]
[7] [ 57, 97, 61, 29, 13, 5, 1, 1]
[8] [ 186, 316, 196, 96, 40, 16, 6, 1, 1]
[9] [ 622, 1054, 652, 316, 136, 52, 19, 7, 1, 1]
-
# The function RiordanSquare is defined in A321620.
Fine := 1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)); RiordanSquare(Fine, 10);
-
(* The function RiordanSquare is defined in A321620. *)
FineGF = 1 + (1 - Sqrt[1 - 4x])/(3 - Sqrt[1 - 4x]);
RiordanSquare[FineGF, 10] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
# uses[riordan_square from A321620]
riordan_square(1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)), 10)
Comments