cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A327073 Number of labeled simple connected graphs with n vertices and exactly one bridge.

Original entry on oeis.org

0, 0, 1, 0, 12, 200, 7680, 506856, 58934848, 12205506096, 4595039095680, 3210660115278000, 4240401342141499392, 10743530775519296581944, 52808688280248604235191296, 507730995579614277599205009240, 9603347831901155679455061048606720, 358743609478638769812094362544644831968
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).

Crossrefs

Column k = 1 of A327072.
The unlabeled version is A327074.
Connected graphs with no bridges are A007146.
Connected graphs whose bridges are all leaves are A322395.
Connected graphs with at least one bridge are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==1&]],{n,0,5}]
  • PARI
    \\ See A095983.
    seq(n)={my(p=x*deriv(log(sum(k=0, n-1, 2^binomial(k, 2) * x^k / k!) + O(x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))^2/2), -(n+1)) } \\ Andrew Howroyd, Dec 28 2020

Formula

E.g.f.: (x + Sum_{k>=2} A095983(k)*x^k/(k-1)!)^2/2. - Andrew Howroyd, Aug 25 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 25 2019

A327149 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of simple labeled graphs covering n vertices with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 3, 12, 15, 10, 1, 40, 180, 297, 180, 60, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty graph.

Examples

			Triangle begins:
   1
   {}
   0   1
   0   0   3   1
   3  12  15  10   1
  40 180 297 180  60  10   1
		

Crossrefs

Row sums are A006129.
Column k = 0 is A327070.
Column k = 1 is A327079.
The corresponding triangle for vertex-connectivity is A327126.
The corresponding triangle for spanning edge-connectivity is A327069.
The non-covering version is A327148.
The unlabeled version is A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}

Formula

A327148(n,k) = Sum_{m = 0..n} binomial(n,m) T(m,k). In words, column k is the inverse binomial transform of column k of A327148.

A327231 Number of labeled simple connected graphs covering a subset of {1..n} with at least one non-endpoint bridge (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 0, 1, 3, 18, 250, 5475, 191541, 11065572, 1104254964, 201167132805, 69828691941415, 47150542741904118, 62354150876493659118, 161919876753750972738791, 827272271567137357352991705, 8331016130913639432634637862600, 165634930763383717802534343776893928
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A bridge is an edge whose removal disconnected the graph, while an endpoint is a vertex belonging to only one edge. The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Examples

			The a(2) = 1 through a(4) = 18 edge-sets:
  {12}  {12}  {12}
        {13}  {13}
        {23}  {14}
              {23}
              {24}
              {34}
              {12,13,24}
              {12,13,34}
              {12,14,23}
              {12,14,34}
              {12,23,34}
              {12,24,34}
              {13,14,23}
              {13,14,24}
              {13,23,24}
              {13,24,34}
              {14,23,24}
              {14,23,34}
		

Crossrefs

Column k = 1 of A327148.
The covering version is A327079.
Connected bridged graphs (spanning edge-connectivity 1) are A327071.
BII-numbers of set-systems with non-spanning edge-connectivity 1 are A327099.
Covering set-systems with non-spanning edge-connectivity 1 are A327129.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==1&]],{n,0,4}]

Formula

Binomial transform of A327079.

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 11 2019

A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.

Examples

			Triangle begins:
    1
    1   0
    0   1   0
    1   0   3   0
   10  12   0  16   0
  253 200 150   0 125   0
		

Crossrefs

Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
Column k = 1 is A327073.
Column k = n - 1 is A000272.
Row sums are A001187.
The unlabeled version is A327077.
Row sums without the first column are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
  • PARI
    \\ p is e.g.f. of A053549.
    T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020

A327200 Number of labeled graphs with n vertices and non-spanning edge-connectivity >= 2.

Original entry on oeis.org

0, 0, 0, 4, 42, 718, 26262, 1878422, 256204460, 67525498676, 34969833809892, 35954978661632864, 73737437034063350534, 302166248212488958298674, 2475711390267267917290354410, 40563960064630744031043287569378, 1329219366981359393514586291328267704
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Crossrefs

Row sums of A327148 if the first two columns are removed.
BII-numbers of set-systems with non-spanning edge-connectivity >= 2 are A327102.
Graphs with non-spanning edge-connectivity 1 are A327231.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],eConn[#]>=2&]],{n,0,5}]

Formula

Binomial transform of A322395, if we assume A322395(0) = A322395(1) = A322395(2) = 0.

A327362 Number of labeled connected graphs covering n vertices with at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 3, 28, 475, 14646, 813813, 82060392, 15251272983, 5312295240010, 3519126783483377, 4487168285715524124, 11116496280631563128723, 53887232400918561791887118, 513757147287101157620965656285, 9668878162669182924093580075565776
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A graph is covering if the vertex set is the union of the edge set, so there are no isolated vertices.

Crossrefs

The non-connected version is A327227.
The non-covering version is A327364.
Graphs with endpoints are A245797.
Connected covering graphs are A001187.
Connected graphs with bridges are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={Vec(serlaplace(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k! + O(x*x^n))) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Inverse binomial transform of A327364.
a(n) = A001187(n) - A059166(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A322396 Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Extensions

a(6)-a(10) from Andrew Howroyd, Dec 08 2018
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2020

A327199 Number of labeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 4, 56, 1031, 27189, 1165424, 89723096, 13371146135, 3989665389689, 2388718032951812, 2852540291841718752, 6768426738881535155247, 31870401029679493862010949, 297787425565749788134314214272
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Also graphs with non-spanning edge-connectivity 0.

Examples

			The a(4) = 4 edge-sets: {}, {12,34}, {13,24}, {14,23}.
		

Crossrefs

Column k = 0 of A327148.
The covering case is A327070.
The unlabeled version is A327235.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]!=1&]],{n,0,5}]

Formula

Binomial transform of A327070.

A327364 Number of labeled simple graphs with n vertices, a connected edge-set, and at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 6, 46, 655, 17991, 927416, 89009740, 16020407709, 5468601546685, 3578414666656214, 4529751815161579194, 11175105490563109463875, 54043272967471942825421219, 514566625051705610110588073460, 9677104749727084630538798805505880
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			The a(4) = 46 edge-sets:
  {12}  {12,13}  {12,13,14}  {12,13,14,23}
  {13}  {12,14}  {12,13,24}  {12,13,14,24}
  {14}  {12,23}  {12,13,34}  {12,13,14,34}
  {23}  {12,24}  {12,14,23}  {12,13,23,24}
  {24}  {13,14}  {12,14,34}  {12,13,23,34}
  {34}  {13,23}  {12,23,24}  {12,14,23,24}
        {13,34}  {12,23,34}  {12,14,24,34}
        {14,24}  {12,24,34}  {12,23,24,34}
        {14,34}  {13,14,23}  {13,14,23,34}
        {23,24}  {13,14,24}  {13,14,24,34}
        {23,34}  {13,23,24}  {13,23,24,34}
        {24,34}  {13,23,34}  {14,23,24,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}
		

Crossrefs

The covering case is A327362.
Graphs with endpoints are A245797.
Graphs with connected edge-set are A287689.
Connected graphs with bridges are A327071.
Covering graphs with endpoints are A327227.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={my(x=x + O(x*x^n)); Vec(serlaplace(exp(x)*(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!)) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x))^k/k!)))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Binomial transform of A327362.

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A327196 Number of connected set-systems with n vertices and at least one bridge that is not an endpoint (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 1, 4, 44, 2960
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			Non-isomorphic representatives of the a(3) = 44 set-systems:
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1},{2},{1,2}}
  {{1},{1,2},{2,3}}
  {{1},{2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1},{2},{1,2},{1,3}}
  {{1},{2},{1,3},{2,3}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3}}
  {{1},{2},{3},{1,2},{1,2,3}}
		

Crossrefs

The covering version is A327129.
The BII-numbers of these set-systems are A327099.
The restriction to simple graphs is A327231.
Set-systems with spanning edge-connectivity 1 are A327145.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],eConn[#]==1&]],{n,0,3}]

Formula

Binomial transform of A327129.
Previous Showing 11-20 of 22 results. Next