cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A326248 Number of crossing, nesting set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 28, 252, 1890, 13020, 86564, 571944, 3826230, 26233662, 185746860, 1364083084, 10410773076, 82609104802, 681130756224, 5829231836494, 51711093240518, 474821049202852, 4506533206814480, 44151320870760216, 445956292457725714
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

A set partition is crossing if it has two blocks of the form {...x,y...}, {...z,t...} where x < z < y < t or z < x < t < y, and nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t.

Examples

			The a(5) = 2 set partitions:
  {{1,4},{2,3,5}}
  {{1,3,4},{2,5}}
		

Crossrefs

Crossing and nesting set partitions are (both) A016098.
Crossing, capturing set partitions are A326246.
Nesting, non-crossing set partitions are A122880.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x
    				

Formula

a(n) = A000110(n) - 2*A000108(n) + A001519(n). - Christian Sievers, Oct 16 2024

Extensions

a(11) and beyond from Christian Sievers, Oct 16 2024

A326212 Number of sortable normal multiset partitions of weight n.

Original entry on oeis.org

1, 1, 4, 15, 59, 230, 901, 3522, 13773, 53847, 210527, 823087, 3218002, 12581319, 49188823, 192312112, 751877137, 2939592383, 11492839729, 44933224559, 175674134309, 686828104551, 2685272063984, 10498530869151, 41045803846015, 160475597429847
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers. It is sortable if some permutation has an ordered concatenation. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The a(0) = 1 through a(3) = 15 multiset partitions:
  {}  {{1}}  {{1,1}}    {{1,1,1}}
             {{1,2}}    {{1,1,2}}
             {{1},{1}}  {{1,2,2}}
             {{1},{2}}  {{1,2,3}}
                        {{1},{1,1}}
                        {{1},{1,2}}
                        {{1,1},{2}}
                        {{1},{2,2}}
                        {{1,2},{2}}
                        {{1},{2,3}}
                        {{1,2},{3}}
                        {{1},{1},{1}}
                        {{1},{1},{2}}
                        {{1},{2},{2}}
                        {{1},{2},{3}}
		

Crossrefs

Sortable set partitions are A011782.
Unsortable normal multiset partitions are A326211.
Crossing normal multiset partitions are A326277.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],OrderedQ[Join@@#]&]],{n,0,5}]
  • PARI
    seq(n) = my(p=1/eta(x + O(x*x^n))); Vec(((1 - x)*(1 - 2*x) - x^2*p)/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*p)) \\ Andrew Howroyd, May 11 2023

Formula

A255906(n) = a(n) + A326211(n).
G.f.: ((1 - x)*(1 - 2*x) - x^2*P(x))/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*P(x)) where P(x) is the g.f. of A000041. - Andrew Howroyd, May 11 2023

Extensions

Terms a(10) and beyond from Andrew Howroyd, May 11 2023

A326257 MM-numbers of weakly nesting multiset partitions.

Original entry on oeis.org

49, 91, 98, 133, 147, 169, 182, 196, 203, 245, 247, 259, 266, 273, 294, 299, 301, 338, 343, 361, 364, 371, 377, 392, 399, 406, 427, 441, 455, 481, 490, 494, 497, 507, 518, 529, 532, 539, 546, 551, 553, 559, 588, 598, 602, 609, 623, 637, 665, 667, 676, 686, 689
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is weakly nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x <= z and t <= y or z <= x and y <= t.

Examples

			The sequence of terms together with their multiset multisystems begins:
   49: {{1,1},{1,1}}
   91: {{1,1},{1,2}}
   98: {{},{1,1},{1,1}}
  133: {{1,1},{1,1,1}}
  147: {{1},{1,1},{1,1}}
  169: {{1,2},{1,2}}
  182: {{},{1,1},{1,2}}
  196: {{},{},{1,1},{1,1}}
  203: {{1,1},{1,3}}
  245: {{2},{1,1},{1,1}}
  247: {{1,2},{1,1,1}}
  259: {{1,1},{1,1,2}}
  266: {{},{1,1},{1,1,1}}
  273: {{1},{1,1},{1,2}}
  294: {{},{1},{1,1},{1,1}}
  299: {{1,2},{2,2}}
  301: {{1,1},{1,4}}
  338: {{},{1,2},{1,2}}
  343: {{1,1},{1,1},{1,1}}
  361: {{1,1,1},{1,1,1}}
		

Crossrefs

MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A324256.
MM-numbers of capturing multiset partitions are A326255.
Nesting set partitions are A016098.

Programs

  • Mathematica
    wknXQ[stn_]:=MatchQ[stn,{_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)]
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],wknXQ[primeMS/@primeMS[#]]&]

A324168 Number of non-crossing antichains of nonempty subsets of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 19, 120, 1084, 11783, 141110, 1791156, 23646352, 321220257, 4459886776, 63000867229, 902528825332, 13080523942476, 191445447535373, 2825542818304080, 42005234042942228, 628422035415996065, 9454076958795999908, 142933849346150225253, 2170556938059142024688
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(0) = 1 through a(3) = 19 non-crossing antichains:
  {}  {}     {}        {}
      {{1}}  {{1}}     {{1}}
             {{2}}     {{2}}
             {{12}}    {{3}}
             {{1}{2}}  {{12}}
                       {{13}}
                       {{23}}
                       {{123}}
                       {{1}{2}}
                       {{1}{3}}
                       {{2}{3}}
                       {{1}{23}}
                       {{2}{13}}
                       {{3}{12}}
                       {{12}{13}}
                       {{12}{23}}
                       {{13}{23}}
                       {{1}{2}{3}}
                       {{12}{13}{23}}
		

Crossrefs

Cf. A000108 (non-crossing set partitions), A000124, A000372 (antichains), A001006, A001263, A006126 (antichain covers), A014466 (nonempty antichains), A054726 (non-crossing graphs), A099947, A261005, A306438.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
  • PARI
    seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-2*x))/x) } \\ Andrew Howroyd, Jan 20 2023

Formula

Binomial transform of A324167.
G.f.: A(x) = B(x/(1-2*x))/x where B(x)/x is the g.f. of A359984. - Andrew Howroyd, Jan 20 2023

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023

A326246 Number of crossing, capturing set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 37, 307, 2173, 14344, 92402, 596688
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

A set partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y, and capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The a(5) = 3 set partitions:
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
		

Crossrefs

MM-numbers of crossing, capturing multiset partitions are A326259.
Crossing set partitions are A016098.
Capturing set partitions are A326243.
Crossing, nesting set partitions are A326248.
Crossing, non-capturing set partitions are A326245.
Non-crossing, capturing set partitions are A122880 (conjecture).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A324324 MM-numbers of crossing set partitions.

Original entry on oeis.org

2117, 3973, 4843, 5891, 6757, 7181, 7801, 10019, 10063, 11051, 11567, 13021, 13193, 13459, 14123, 14921, 17603, 18407, 18761, 18877, 19307, 19633, 20941, 21083, 21251, 21457, 22849, 23519, 23533, 24727, 26101, 27133, 27169, 27173, 27413, 29111, 30479, 31261
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part in the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.
A multiset multisystem is crossing if it contains two parts of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Crossrefs

Cf. A000108 (non-crossing set partitions), A001055, A001222, A003963, A005117, A016098 (crossing set partitions), A054726, A056239, A112798, A302242, A302243, A302505, A302521 (MM-numbers of set partitions).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    setptnQ[bks_]:=UnsameQ@@Join@@bks&&!MemberQ[bks,{}];
    Select[Range[10000],And[croXQ[primeMS/@primeMS[#]],setptnQ[primeMS/@primeMS[#]]]&]

A326252 Number of digraphs with vertices {1..n} whose increasing edges are crossing.

Original entry on oeis.org

0, 0, 0, 0, 16384, 22020096, 62679678976, 556181084962816
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

A directed edge (a,b) is increasing if a < b. Two edges (a,b), (c,d) are crossing if a < c < b < d or c < a < d < b.

Crossrefs

Simple graphs whose edges are crossing are A326210.
Digraphs whose increasing edges are not crossing are A326251.
Digraphs whose edges are not crossing are A326237.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

a(n) = 2^(n * (n + 1)/2) * A326210(n).

A326259 MM-numbers of crossing, capturing multiset partitions (with empty parts allowed).

Original entry on oeis.org

8903, 15167, 16717, 17806, 18647, 20329, 20453, 21797, 22489, 25607, 26709, 27649, 29551, 30334, 31373, 32741, 33434, 34691, 35177, 35612, 35821, 37091, 37133, 37294, 37969, 38243, 39493, 40658, 40906, 41449, 42011, 42949, 43594, 43817, 43873, 44515, 44861
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. It is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   8903: {{1,3},{2,2,4}}
  15167: {{1,3},{2,2,5}}
  16717: {{2,4},{1,3,3}}
  17806: {{},{1,3},{2,2,4}}
  18647: {{1,3},{2,2,6}}
  20329: {{1,3},{1,2,2,4}}
  20453: {{1,2,3},{1,2,4}}
  21797: {{1,1,3},{2,2,4}}
  22489: {{1,4},{2,2,5}}
  25607: {{1,3},{2,2,7}}
  26709: {{1},{1,3},{2,2,4}}
  27649: {{1,4},{2,2,6}}
  29551: {{1,3},{2,2,8}}
  30334: {{},{1,3},{2,2,5}}
  31373: {{2,5},{1,3,3}}
  32741: {{1,3},{2,2,2,4}}
  33434: {{},{2,4},{1,3,3}}
  34691: {{1,2,3},{2,2,4}}
  35177: {{1,3},{1,2,2,5}}
  35612: {{},{},{1,3},{2,2,4}}
		

Crossrefs

Crossing set partitions are A000108.
Capturing set partitions are A326243.
Crossing, capturing set partitions are A326246.
MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    Select[Range[100000],capXQ[primeMS/@primeMS[#]]&&croXQ[primeMS/@primeMS[#]]&]

A326279 Number of labeled n-vertex simple graphs containing either a crossing or a nesting pair of edges.

Original entry on oeis.org

0, 0, 0, 0, 28, 864, 32064, 2094064
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 28 edge-sets:
  {13,24}  {12,13,24}  {12,13,14,23}  {12,13,14,23,24}  {12,13,14,23,24,34}
  {14,23}  {12,14,23}  {12,13,14,24}  {12,13,14,23,34}
           {13,14,23}  {12,13,23,24}  {12,13,14,24,34}
           {13,14,24}  {12,13,24,34}  {12,13,23,24,34}
           {13,23,24}  {12,14,23,24}  {12,14,23,24,34}
           {13,24,34}  {12,14,23,34}  {13,14,23,24,34}
           {14,23,24}  {13,14,23,24}
           {14,23,34}  {13,14,23,34}
                       {13,14,24,34}
                       {13,23,24,34}
                       {14,23,24,34}
		

Crossrefs

Crossing and nesting simple graphs are (both) A326210, while non-crossing, non-nesting simple graphs are A326244.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

A006125(n) = a(n) + A326244(n).

A326245 Number of crossing, non-capturing set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 1, 7, 34, 141, 537, 1941, 6777, 23096, 77340
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

A set partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y, and capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The a(4) = 1 and a(5) = 7 set partitions:
  {{1,3},{2,4}}  {{1,2,4},{3,5}}
                 {{1,3},{2,4,5}}
                 {{1},{2,4},{3,5}}
                 {{1,3},{2,4},{5}}
                 {{1,3},{2,5},{4}}
                 {{1,4},{2},{3,5}}
                 {{1,4},{2,5},{3}}
		

Crossrefs

Crossing set partitions are A016098.
Non-capturing set partitions are A054391.
Crossing, capturing set partitions are A326246.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
Previous Showing 11-20 of 29 results. Next