cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A347045 Smallest divisor of n with exactly half as many prime factors (counting multiplicity) as n, or 1 if there are none.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 3, 4, 1, 1, 1, 1, 3, 2, 1, 4, 5, 2, 1, 1, 1, 1, 1, 1, 3, 2, 5, 4, 1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 1, 1, 7, 1, 3, 1, 1, 6, 5, 4, 3, 2, 1, 4, 1, 2, 1, 8, 5, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 7, 1, 1, 1, 9, 2, 1, 4, 5, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2021

Keywords

Examples

			The divisors of 90 with half bigomega are: 6, 9, 10, 15, so a(90) = 6.
		

Crossrefs

The smallest divisor without the condition is A020639 (greatest: A006530).
Positions of 1's are A026424.
Positions of even terms are A063745 = 2*A026424.
The case of powers of 2 is A072345.
Positions of 2's are A100484.
Divisors of this type are counted by A345957 (rounded: A096825).
The rounded version is A347043.
The greatest divisor of this type is A347046 (rounded: A347044).
A000005 counts divisors.
A001221 counts distinct prime factors.
A001222 counts all prime factors (also called bigomega).
A056239 adds up prime indices, row sums of A112798.
A207375 lists central divisors (min: A033676, max: A033677).
A340387 lists numbers whose sum of prime indices is twice bigomega.
A340609 lists numbers whose maximum prime index divides bigomega.
A340610 lists numbers whose maximum prime index is divisible by bigomega.
A347042 counts divisors d|n such that bigomega(d) divides bigomega(n).

Programs

  • Mathematica
    Table[If[#=={},1,Min[#]]&@Select[Divisors[n], PrimeOmega[#]==PrimeOmega[n]/2&],{n,100}]
    a[n_] := Module[{p = Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]], np}, np = Length[p]; If[OddQ[np], 1, Times @@ p[[1 ;; np/2]]]]; Array[a, 100] (* Amiram Eldar, Nov 02 2024 *)
  • Python
    from sympy import divisors, factorint
    def a(n):
        npf = len(factorint(n, multiple=True))
        for d in divisors(n)[1:-1]:
            if 2*len(factorint(d, multiple=True)) == npf: return d
        return 1
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Aug 18 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A347045(n):
        fs = factorint(n,multiple=True)
        q, r = divmod(len(fs),2)
        return 1 if r else prod(fs[:q]) # Chai Wah Wu, Aug 20 2021

Formula

a(n) = Product_{k=1..A001222(n)/2} A027746(n,k) if A001222(n) is even, and 1 otherwise. - Amiram Eldar, Nov 02 2024

A361204 Positive integers k such that 2*omega(k) <= bigomega(k).

Original entry on oeis.org

1, 4, 8, 9, 16, 24, 25, 27, 32, 36, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 100, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 196, 200, 208, 216, 224, 225, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2023

Keywords

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    16: {1,1,1,1}
    24: {1,1,1,2}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
    40: {1,1,1,3}
    48: {1,1,1,1,2}
    49: {4,4}
    54: {1,2,2,2}
    56: {1,1,1,4}
    64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A237363.
The complement is A361393.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.
A360005 gives median of prime indices (times 2), distinct A360457.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Maple
    filter:= proc(n) local F,t;
      F:= ifactors(n)[2];
      add(t[2],t=F) >= 2*nops(F)
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 22 2023
  • Mathematica
    Select[Range[100],2*PrimeNu[#]<=PrimeOmega[#]&]

Formula

A001222(a(n)) >= 2*A001221(a(n)).

A361393 Positive integers k such that 2*omega(k) > bigomega(k).

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Comments

First differs from A317090 in having 120 and lacking 360.
There are numbers like 1, 120, 168, 180, 252,... which are not in A179983 but in here, and others like 360, 504, 540, 600,... which are in A179983 but not in here. - R. J. Mathar, Mar 21 2023

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   10: {1,3}
   11: {5}
   12: {1,1,2}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   18: {1,2,2}
   19: {8}
   20: {1,1,3}
The prime indices of 120 are {1,1,1,2,3}, with 3 distinct parts and 5 parts, and 2*3 > 5, so 120 is in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, with 3 distinct parts and 6 parts, and 2*3 is not greater than 6, so 360 is not in the sequence.
		

Crossrefs

These partitions are counted by A237365.
The complement is A361204.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors.
A112798 lists prime indices, sum A056239.
A326567/A326568 gives mean of prime indices.
A360005 gives median of prime indices (times 2), distinct A360457.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Maple
    isA361393 := proc(n)
        if 2*A001221(n) > numtheory[bigomega](n) then
            true;
        else
            false ;
        end if:
    end proc:
    for n from 1 to 100 do
        if isA361393(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Mar 21 2023
  • Mathematica
    Select[Range[1000],2*PrimeNu[#]>PrimeOmega[#]&]

Formula

{k: 2*A001221(k) > A001222(k)}. - R. J. Mathar, Mar 21 2023

A340856 Squarefree numbers whose greatest prime index (A061395) is divisible by their number of prime factors (A001222).

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 30, 31, 35, 37, 38, 39, 41, 43, 47, 53, 57, 58, 59, 61, 65, 67, 71, 73, 74, 78, 79, 83, 86, 87, 89, 91, 95, 97, 101, 103, 106, 107, 109, 111, 113, 122, 127, 129, 130, 131, 133, 137, 138, 139, 142, 143, 145
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

Also Heinz numbers of strict integer partitions whose greatest part is divisible by their number of parts. These partitions are counted by A340828.

Examples

			The sequence of terms together with their prime indices begins:
      2: {1}         31: {11}       71: {20}
      3: {2}         35: {3,4}      73: {21}
      5: {3}         37: {12}       74: {1,12}
      6: {1,2}       38: {1,8}      78: {1,2,6}
      7: {4}         39: {2,6}      79: {22}
     11: {5}         41: {13}       83: {23}
     13: {6}         43: {14}       86: {1,14}
     14: {1,4}       47: {15}       87: {2,10}
     17: {7}         53: {16}       89: {24}
     19: {8}         57: {2,8}      91: {4,6}
     21: {2,4}       58: {1,10}     95: {3,8}
     23: {9}         59: {17}       97: {25}
     26: {1,6}       61: {18}      101: {26}
     29: {10}        65: {3,6}     103: {27}
     30: {1,2,3}     67: {19}      106: {1,16}
		

Crossrefs

Note: Heinz number sequences are given in parentheses below.
The case of equality, and the reciprocal version, are both A002110.
The non-strict reciprocal version is A168659 (A340609).
The non-strict version is A168659 (A340610).
These are the Heinz numbers of partitions counted by A340828.
A001222 counts prime factors.
A006141 counts partitions whose length equals their minimum (A324522).
A056239 adds up the prime indices.
A061395 selects the maximum prime index.
A067538 counts partitions whose length divides their sum (A316413/A326836).
A112798 lists the prime indices of each positive integer.
A200750 counts partitions with length coprime to maximum (A340608).
A257541 gives the rank of the partition with Heinz number n.
A340830 counts strict partitions whose parts are multiples of the length.

Programs

  • Mathematica
    Select[Range[2,100],SquareFreeQ[#]&&Divisible[PrimePi[FactorInteger[#][[-1,1]]],PrimeOmega[#]]&]

A340651 Number of non-isomorphic cross-balanced multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 26, 77, 220, 677, 2098, 6756, 22101, 74264, 253684, 883795, 3130432, 11275246, 41240180, 153117873, 576634463, 2201600769, 8517634249, 33378499157, 132438117118, 531873247805, 2161293783123, 8883906870289, 36928576428885, 155196725172548, 659272353608609, 2830200765183775
Offset: 0

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

We define a multiset partition to be cross-balanced if it uses exactly as many distinct vertices as the greatest size of a part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 16 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}
         {{1},{1}}  {{1},{2,2}}    {{1,1},{2,2}}
                    {{2},{1,2}}    {{1,2},{1,2}}
                    {{1},{1},{1}}  {{1,2},{2,2}}
                                   {{1},{2,3,3}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{2,2}}
                                   {{1},{2},{1,2}}
                                   {{1},{2},{2,2}}
                                   {{2},{2},{1,2}}
                                   {{1},{1},{1},{1}}
		

Crossrefs

The co-balanced version is A319616.
The balanced version is A340600.
The twice-balanced version is A340652.
The version for factorizations is A340654.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
- A047993 counts balanced partitions.
- A106529 lists balanced numbers.
- A340596 counts co-balanced factorizations.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n, G(k,n,k) - G(k-1,n,k) - G(k,n,k-1) + G(k-1,n,k-1)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 15 2024

A340691 Greatest image of A001222 over the prime indices of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 0, 1, 1, 2, 1, 3, 3, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 4, 1, 1, 2, 3, 2, 1, 1, 3, 1, 2, 0, 2, 1, 1, 1, 2, 2, 3, 1, 2, 3, 1, 3, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2021

Keywords

Comments

For the initial term, we assume the empty set has maximum image 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4070 are {1,3,5,12} -> {0,1,1,3}, so a(4070) = 3.
The prime indices of 8892 are {1,1,2,2,6,8} -> {0,0,1,1,2,3} so a(8892) = 3.
		

Crossrefs

Positions of first appearances are A033844.
Positions of 0's are A000079.
Positions of terms <= 1 are A302540.
Positions of 1's are A302540 \ A000079.
The version for minimum is A340928.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices.
A061395 selects the greatest prime index.
A072233 counts partitions by sum and maximum.
A112798 lists the prime indices of each positive integer.
A303975 counts distinct prime factors in the product of prime indices.

Programs

  • Mathematica
    Table[If[n==1,0,Max@@PrimeOmega/@PrimePi/@First/@FactorInteger[n]],{n,100}]

A363134 Positive integers whose multiset of prime indices satisfies: (length) = 2*(minimum).

Original entry on oeis.org

4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 81, 82, 86, 94, 106, 118, 122, 134, 135, 142, 146, 158, 166, 178, 189, 194, 202, 206, 214, 218, 225, 226, 254, 262, 274, 278, 297, 298, 302, 314, 315, 326, 334, 346, 351, 358, 362, 375, 382, 386, 394, 398, 422, 441
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     4: {1,1}         94: {1,15}       214: {1,28}
     6: {1,2}        106: {1,16}       218: {1,29}
    10: {1,3}        118: {1,17}       225: {2,2,3,3}
    14: {1,4}        122: {1,18}       226: {1,30}
    22: {1,5}        134: {1,19}       254: {1,31}
    26: {1,6}        135: {2,2,2,3}    262: {1,32}
    34: {1,7}        142: {1,20}       274: {1,33}
    38: {1,8}        146: {1,21}       278: {1,34}
    46: {1,9}        158: {1,22}       297: {2,2,2,5}
    58: {1,10}       166: {1,23}       298: {1,35}
    62: {1,11}       178: {1,24}       302: {1,36}
    74: {1,12}       189: {2,2,2,4}    314: {1,37}
    81: {2,2,2,2}    194: {1,25}       315: {2,2,3,4}
    82: {1,13}       202: {1,26}       326: {1,38}
    86: {1,14}       206: {1,27}       334: {1,39}
		

Crossrefs

Partitions of this type are counted by A237757.
Removing the factor 2 gives A324522.
For maximum instead of length we have A361908, counted by A118096.
For mean instead of length we have A363133, counted by A363132.
For maximum instead of minimum we have A363218, counted by A237753.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A360005 gives twice median of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[prix[#]]==2*Min[prix[#]]&]

Formula

A001222(a(n)) = 2*A055396(a(n)).

A324561 Numbers with at least one prime index equal to 0, 1, or 4 modulo 5.

Original entry on oeis.org

2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 18, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 80, 82, 84, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of the integer partitions counted by A039900. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  24: {1,1,1,2}
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= n-> is(irem(pi(min(factorset(n))), 5) in {0, 1, 4}):
    select(q, [$2..100])[];  # Alois P. Heinz, Mar 07 2019
  • Mathematica
    Select[Range[100],Intersection[Mod[If[#==1,{},PrimePi/@First/@FactorInteger[#]],5],{0,1,4}]!={}&]

A363133 Numbers > 1 whose prime indices satisfy 2*(minimum) = (mean).

Original entry on oeis.org

10, 28, 30, 39, 84, 88, 90, 100, 115, 171, 208, 252, 255, 259, 264, 270, 273, 280, 300, 363, 517, 544, 624, 756, 783, 784, 792, 793, 810, 840, 880, 900, 925, 1000, 1035, 1085, 1197, 1216, 1241, 1425, 1495, 1521, 1595, 1615, 1632, 1683, 1691, 1785, 1872, 1911
Offset: 1

Views

Author

Gus Wiseman, May 29 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    10: {1,3}
    28: {1,1,4}
    30: {1,2,3}
    39: {2,6}
    84: {1,1,2,4}
    88: {1,1,1,5}
    90: {1,2,2,3}
   100: {1,1,3,3}
   115: {3,9}
   171: {2,2,8}
   208: {1,1,1,1,6}
   252: {1,1,2,2,4}
   255: {2,3,7}
   259: {4,12}
   264: {1,1,1,2,5}
		

Crossrefs

Removing the factor 2 gives A000961.
For maximum instead of mean we have A361908, counted by A118096.
Partitions of this type are counted by A363132.
For length instead of mean we have A363134, counted by A237757.
For 2*(maximum) = (length) we have A363218, counted by A237753.
A051293 counts subsets with integer mean.
A112798 lists prime indices, length A001222, sum A056239.
A360005 gives twice median of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==2*Min[prix[#]]&]

A363223 Numbers with bigomega equal to median prime index.

Original entry on oeis.org

2, 9, 10, 50, 70, 75, 105, 110, 125, 130, 165, 170, 175, 190, 195, 230, 255, 275, 285, 290, 310, 325, 345, 370, 410, 425, 430, 435, 465, 470, 475, 530, 555, 575, 590, 610, 615, 645, 670, 686, 705, 710, 725, 730, 775, 790, 795, 830, 885, 890, 915, 925, 970
Offset: 1

Views

Author

Gus Wiseman, May 29 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    9: {2,2}
   10: {1,3}
   50: {1,3,3}
   70: {1,3,4}
   75: {2,3,3}
  105: {2,3,4}
  110: {1,3,5}
  125: {3,3,3}
  130: {1,3,6}
  165: {2,3,5}
  170: {1,3,7}
  175: {3,3,4}
		

Crossrefs

For maximum instead of median we have A106529, counted by A047993.
For minimum instead of median we have A324522, counted by A006141.
Partitions of this type are counted by A361800.
For twice median we have A362050, counted by A362049.
For maximum instead of length we have A362621, counted by A053263.
A000975 counts subsets with integer median.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A359908 lists numbers whose prime indices have integer median.
A360005 gives twice median of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],PrimeOmega[#]==Median[prix[#]]&]

Formula

2*A001222(a(n)) = A360005(a(n)).
Previous Showing 21-30 of 31 results. Next