cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A330943 Matula-Goebel numbers of singleton-reduced rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 13, 14, 16, 18, 19, 21, 24, 26, 28, 32, 34, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 61, 63, 64, 68, 72, 73, 74, 76, 78, 82, 84, 86, 89, 91, 96, 98, 101, 102, 104, 106, 107, 108, 111, 112, 114, 117, 119, 122, 126, 128, 129, 131
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

These trees are counted by A330951.
A rooted tree is singleton-reduced if no non-leaf node has all singleton branches, where a rooted tree is a singleton if its root has degree 1.
The Matula-Goebel number of a rooted tree is the product of primes of the Matula-Goebel numbers of its branches. This gives a bijective correspondence between positive integers and unlabeled rooted trees.
A prime index of n is a number m such that prime(m) divides n. A number belongs to this sequence iff it is 1 or its prime indices all belong to this sequence but are not all prime.

Examples

			The sequence of all singleton-reduced rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   7: ((oo))
   8: (ooo)
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  19: ((ooo))
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  32: (ooooo)
  34: (o((oo)))
  36: (oo(o)(o))
  37: ((oo(o)))
		

Crossrefs

The series-reduced case is A291636.
Unlabeled rooted trees are counted by A000081.
Numbers whose prime indices are not all prime are A330945.
Singleton-reduced rooted trees are counted by A330951.
Singleton-reduced phylogenetic trees are A000311.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mgsingQ[n_]:=n==1||And@@mgsingQ/@primeMS[n]&&!And@@PrimeQ/@primeMS[n];
    Select[Range[100],mgsingQ]

A324755 Number of integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 3, 5, 6, 10, 7, 16, 14, 23, 23, 35, 34, 53, 54, 75, 80, 112, 115, 160, 169, 223, 244, 315, 339, 442, 478, 604, 664, 832, 910, 1131, 1245, 1524, 1689, 2054, 2263, 2743, 3039, 3634, 4042, 4809, 5343, 6326, 7035, 8276, 9217, 10795, 12011
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
For example, (6,2) is such a partition because the prime indices of 6 are {1,2}, which do not all belong to the partition. On the other hand, (5,3) is not such a partition because the prime indices of 5 are {3}, and 3 belongs to the partition.

Examples

			The a(2) = 1 through a(10) = 10 integer partitions (A = 10):
  (2)  (3)  (4)   (5)  (6)    (7)   (8)     (9)    (A)
            (22)       (33)   (43)  (44)    (54)   (55)
                       (42)   (52)  (62)    (63)   (64)
                       (222)        (422)   (72)   (73)
                                    (2222)  (333)  (82)
                                            (522)  (433)
                                                   (442)
                                                   (622)
                                                   (4222)
                                                   (22222)
		

Crossrefs

The subset version is A324739, with maximal case A324762. The strict case is A324750. The Heinz number version is A324760. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@If[k==1,{},FactorInteger[k]]]]&]],{n,0,30}]

A324759 Heinz numbers of integer partitions containing no part > 1 whose prime indices all belong to the partition.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 71, 73, 74, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
		

Crossrefs

The subset version is A324738, with maximal case A324744. The strict integer partition version is A324749. The integer partition version is A324754. An infinite version is A324694.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MemberQ[DeleteCases[primeMS[#],1],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]

A324856 Numbers divisible by exactly one of their prime indices.

Original entry on oeis.org

2, 10, 14, 15, 22, 26, 34, 38, 45, 46, 50, 55, 58, 62, 70, 74, 82, 86, 94, 98, 105, 106, 118, 119, 122, 130, 134, 135, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 195, 202, 206, 207, 214, 218, 226, 230, 242, 250, 254, 255, 262, 266, 274, 275, 278, 285
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

Numbers n such that A324848(n) = 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If k is in A324846, then k*prime(k) is in the sequence. - Robert Israel, Mar 22 2019

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
  10: {1,3}
  14: {1,4}
  15: {2,3}
  22: {1,5}
  26: {1,6}
  34: {1,7}
  38: {1,8}
  45: {2,2,3}
  46: {1,9}
  50: {1,3,3}
  55: {3,5}
  58: {1,10}
  62: {1,11}
  70: {1,3,4}
  74: {1,12}
  82: {1,13}
  86: {1,14}
  94: {1,15}
  98: {1,4,4}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= select(t -> n mod numtheory:-pi(t[1])=0, ifactors(n)[2]);
      nops(F)=1 and F[1][2]=1
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Mar 22 2019
  • Mathematica
    Select[Range[100],Total[Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k/;Divisible[#,PrimePi[p]]]]==1&]

A330951 Number of singleton-reduced unlabeled rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 24, 52, 119, 272, 635, 1499, 3577, 8614, 20903, 51076, 125565, 310302, 770536, 1921440, 4809851, 12081986, 30445041, 76938794, 194950040, 495174037, 1260576786, 3215772264, 8219437433, 21046602265, 53982543827, 138678541693, 356785641107
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

A rooted tree is singleton-reduced if no non-leaf node has all singleton branches, where a rooted tree is a singleton if its root has degree 1.

Examples

			The a(1) = 1 through a(6) = 11 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)
                ((oo))  ((ooo))   ((oooo))
                (o(o))  (o(oo))   (o(ooo))
                        (oo(o))   (oo(oo))
                        ((o(o)))  (ooo(o))
                                  ((o)(oo))
                                  ((o(oo)))
                                  ((oo(o)))
                                  (o((oo)))
                                  (o(o)(o))
                                  (o(o(o)))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A330943.
The series-reduced case is A001678.
Unlabeled rooted trees are counted by A000081.
Singleton-reduced phylogenetic trees are A000311.

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],FreeQ[#,q:{__List}/;Times@@Length/@q==1]&]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, #v-1, v[n+1] = EulerT(v[1..n])[n] - EulerT(Vec(x^2*Ser(v[1..n-1])/(1+x), -n))[n]); v} \\ Andrew Howroyd, Dec 10 2020

Formula

G.f.: A(x) satisfies A(x) = x + x*exp(Sum_{k>=1} A(x^k)/k) - x*exp(Sum_{k>=1} x^k*A(x^k)/(1 + x^k)/k). - Andrew Howroyd, Dec 10 2020
a(n) ~ c * d^n / n^(3/2), where d = 2.69474016697407303512228736537683134987637576... and c = 0.41800971384719166056172258174139385922545... - Vaclav Kotesovec, Nov 16 2021

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 10 2020

A324750 Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 8, 8, 11, 10, 15, 16, 19, 23, 27, 28, 35, 39, 47, 50, 63, 68, 77, 91, 102, 114, 130, 147, 169, 187, 213, 237, 268, 300, 336, 380, 422, 472, 525, 587, 647, 731, 810, 895, 996, 1102, 1227, 1355, 1498, 1661, 1818, 2020, 2221
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(17) = 15 strict integer partitions (A...H = 10...17):
  2  3  4  5  6   7   8   9   A   B    C    D    E    F    G    H
              42  43  62  54  64  65   75   76   86   87   97   98
                  52      63  73  83   84   85   95   96   A6   A7
                          72  82  542  93   94   A4   A5   C4   B6
                                       A2   A3   B3   B4   D3   C5
                                       642  B2   C2   C3   E2   D4
                                            643  752  D2   763  E3
                                            652  842  654  862  F2
                                                      762  943  854
                                                      843  A42  863
                                                      852       872
                                                                A43
                                                                A52
                                                                B42
                                                                6542
		

Crossrefs

The subset version is A324739. The non-strict version is A324755. The Heinz number version is A324760. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]

A324754 Number of integer partitions of n containing no part > 1 whose prime indices all belong to the partition.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 7, 8, 11, 12, 19, 19, 30, 34, 46, 50, 71, 76, 104, 119, 151, 171, 225, 247, 315, 360, 446, 504, 629, 703, 867, 986, 1192, 1346, 1636, 1837, 2204, 2500, 2965, 3348, 3980, 4475, 5276, 5963, 6973, 7852, 9194, 10335, 12009, 13536, 15650, 17589
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
For example, (6,2) is such a partition because the prime indices of 6 are {1,2}, which do not all belong to the partition. On the other hand, (5,3) is not such a partition because the prime indices of 5 are {3}, and 3 belongs to the partition.

Examples

			The a(1) = 1 through a(8) = 11  integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (43)       (44)
                    (31)    (11111)  (42)      (52)       (62)
                    (1111)           (51)      (61)       (71)
                                     (222)     (331)      (422)
                                     (3111)    (511)      (611)
                                     (111111)  (31111)    (2222)
                                               (1111111)  (3311)
                                                          (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The subset version is A324738, with maximal case A324744. The strict case is A324749. The Heinz number version is A324759. An infinite version is A324694.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]

A324760 Heinz numbers of integer partitions not containing 1 or any part whose prime indices all belong to the partition.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137, 139
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  35: {3,4}
  37: {12}
  39: {2,6}
  41: {13}
		

Crossrefs

The subset version is A324739, with maximal case A324762. The strict integer partition version is A324750. The integer partition version is A324755. An infinite version is A324694.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MemberQ[primeMS[#],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]

A324762 Number of maximal subsets of {2...n} containing no element whose prime indices all belong to the subset.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 8, 8, 16, 16, 16, 16, 16, 16, 32, 32, 40, 40, 52, 52, 64, 64, 72, 72, 144, 144, 176, 176, 200, 200, 232, 232, 464, 464, 464, 464, 536, 536, 1072, 1072, 1072, 1072, 2144, 2144, 2400, 2400, 2400, 2400, 4800, 4800, 4800, 4800, 4800
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(9) = 6 maximal subsets:
  {2}  {2}  {2,4}  {3,4}    {3,4,6}    {3,4,6}    {3,4,6,8}    {2,4,5,6,8}
       {3}  {3,4}  {2,4,5}  {2,4,5,6}  {3,6,7}    {3,6,7,8}    {2,5,6,7,8}
                                       {2,4,5,6}  {2,4,5,6,8}  {3,4,6,8,9}
                                       {2,5,6,7}  {2,5,6,7,8}  {3,6,7,8,9}
                                                               {4,5,6,8,9}
                                                               {5,6,7,8,9}
		

Crossrefs

The non-maximal version is A324739.
The version for subsets of {1...n} is A324744.
An infinite version is A324694.

Programs

  • Mathematica
    maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
    Table[Length[maxim[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 27 2019

A330948 Nonprime numbers whose prime indices are not all prime numbers.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices of prime indices begins:
   4: {{},{}}
   6: {{},{1}}
   8: {{},{},{}}
  10: {{},{2}}
  12: {{},{},{1}}
  14: {{},{1,1}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  20: {{},{},{2}}
  21: {{1},{1,1}}
  22: {{},{3}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  28: {{},{},{1,1}}
  30: {{},{1},{2}}
  32: {{},{},{},{},{}}
  34: {{},{4}}
  35: {{2},{1,1}}
  36: {{},{},{1},{1}}
  38: {{},{1,1,1}}
		

Crossrefs

Complement in A330945 of A000040.
Complement in A018252 of A076610.
The restriction to odd terms is A330949.
Nonprime numbers n such that A330944(n) > 0.
Taking odds instead of nonprimes gives A330946.
The number of prime prime indices is given by A257994.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of nonprime index are A320628.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&&!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]
Previous Showing 21-30 of 39 results. Next