A330943
Matula-Goebel numbers of singleton-reduced rooted trees.
Original entry on oeis.org
1, 2, 4, 6, 7, 8, 12, 13, 14, 16, 18, 19, 21, 24, 26, 28, 32, 34, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 61, 63, 64, 68, 72, 73, 74, 76, 78, 82, 84, 86, 89, 91, 96, 98, 101, 102, 104, 106, 107, 108, 111, 112, 114, 117, 119, 122, 126, 128, 129, 131
Offset: 1
The sequence of all singleton-reduced rooted trees together with their Matula-Goebel numbers begins:
1: o
2: (o)
4: (oo)
6: (o(o))
7: ((oo))
8: (ooo)
12: (oo(o))
13: ((o(o)))
14: (o(oo))
16: (oooo)
18: (o(o)(o))
19: ((ooo))
21: ((o)(oo))
24: (ooo(o))
26: (o(o(o)))
28: (oo(oo))
32: (ooooo)
34: (o((oo)))
36: (oo(o)(o))
37: ((oo(o)))
The series-reduced case is
A291636.
Unlabeled rooted trees are counted by
A000081.
Numbers whose prime indices are not all prime are
A330945.
Singleton-reduced rooted trees are counted by
A330951.
Singleton-reduced phylogenetic trees are
A000311.
The set S of numbers whose prime indices do not all belong to S is
A324694.
Cf.
A000669,
A001678,
A006450,
A007097,
A007821,
A061775,
A196050,
A257994,
A276625,
A277098,
A320628,
A330944,
A330948.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
mgsingQ[n_]:=n==1||And@@mgsingQ/@primeMS[n]&&!And@@PrimeQ/@primeMS[n];
Select[Range[100],mgsingQ]
A324755
Number of integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 4, 3, 5, 6, 10, 7, 16, 14, 23, 23, 35, 34, 53, 54, 75, 80, 112, 115, 160, 169, 223, 244, 315, 339, 442, 478, 604, 664, 832, 910, 1131, 1245, 1524, 1689, 2054, 2263, 2743, 3039, 3634, 4042, 4809, 5343, 6326, 7035, 8276, 9217, 10795, 12011
Offset: 0
The a(2) = 1 through a(10) = 10 integer partitions (A = 10):
(2) (3) (4) (5) (6) (7) (8) (9) (A)
(22) (33) (43) (44) (54) (55)
(42) (52) (62) (63) (64)
(222) (422) (72) (73)
(2222) (333) (82)
(522) (433)
(442)
(622)
(4222)
(22222)
Cf.
A000837,
A001462,
A051424,
A112798,
A276625,
A290822,
A304360,
A306844,
A324695,
A324696,
A324744.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@If[k==1,{},FactorInteger[k]]]]&]],{n,0,30}]
A324759
Heinz numbers of integer partitions containing no part > 1 whose prime indices all belong to the partition.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 71, 73, 74, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
The subset version is
A324738, with maximal case
A324744. The strict integer partition version is
A324749. The integer partition version is
A324754. An infinite version is
A324694.
Cf.
A000720,
A001221,
A007097,
A056239,
A112798,
A276625,
A289509,
A290822,
A306844,
A324695,
A324750,
A324755,
A324760.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MemberQ[DeleteCases[primeMS[#],1],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]
A324856
Numbers divisible by exactly one of their prime indices.
Original entry on oeis.org
2, 10, 14, 15, 22, 26, 34, 38, 45, 46, 50, 55, 58, 62, 70, 74, 82, 86, 94, 98, 105, 106, 118, 119, 122, 130, 134, 135, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 195, 202, 206, 207, 214, 218, 226, 230, 242, 250, 254, 255, 262, 266, 274, 275, 278, 285
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
10: {1,3}
14: {1,4}
15: {2,3}
22: {1,5}
26: {1,6}
34: {1,7}
38: {1,8}
45: {2,2,3}
46: {1,9}
50: {1,3,3}
55: {3,5}
58: {1,10}
62: {1,11}
70: {1,3,4}
74: {1,12}
82: {1,13}
86: {1,14}
94: {1,15}
98: {1,4,4}
Cf.
A000720,
A003963,
A112798,
A120383,
A323440,
A324694,
A324704,
A324846,
A324847,
A324848,
A324849,
A324850,
A324926,
A324929.
-
filter:= proc(n) local F;
F:= select(t -> n mod numtheory:-pi(t[1])=0, ifactors(n)[2]);
nops(F)=1 and F[1][2]=1
end proc:
select(filter, [$2..1000]); # Robert Israel, Mar 22 2019
-
Select[Range[100],Total[Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k/;Divisible[#,PrimePi[p]]]]==1&]
A330951
Number of singleton-reduced unlabeled rooted trees with n nodes.
Original entry on oeis.org
1, 1, 1, 3, 5, 11, 24, 52, 119, 272, 635, 1499, 3577, 8614, 20903, 51076, 125565, 310302, 770536, 1921440, 4809851, 12081986, 30445041, 76938794, 194950040, 495174037, 1260576786, 3215772264, 8219437433, 21046602265, 53982543827, 138678541693, 356785641107
Offset: 1
The a(1) = 1 through a(6) = 11 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(oo(o)) (oo(oo))
((o(o))) (ooo(o))
((o)(oo))
((o(oo)))
((oo(o)))
(o((oo)))
(o(o)(o))
(o(o(o)))
The Matula-Goebel numbers of these trees are given by
A330943.
The series-reduced case is
A001678.
Unlabeled rooted trees are counted by
A000081.
Singleton-reduced phylogenetic trees are
A000311.
-
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
Table[Length[Select[urt[n],FreeQ[#,q:{__List}/;Times@@Length/@q==1]&]],{n,10}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=vector(n)); v[1]=1; for(n=1, #v-1, v[n+1] = EulerT(v[1..n])[n] - EulerT(Vec(x^2*Ser(v[1..n-1])/(1+x), -n))[n]); v} \\ Andrew Howroyd, Dec 10 2020
A324750
Number of strict integer partitions of n not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 6, 8, 8, 11, 10, 15, 16, 19, 23, 27, 28, 35, 39, 47, 50, 63, 68, 77, 91, 102, 114, 130, 147, 169, 187, 213, 237, 268, 300, 336, 380, 422, 472, 525, 587, 647, 731, 810, 895, 996, 1102, 1227, 1355, 1498, 1661, 1818, 2020, 2221
Offset: 0
The a(2) = 1 through a(17) = 15 strict integer partitions (A...H = 10...17):
2 3 4 5 6 7 8 9 A B C D E F G H
42 43 62 54 64 65 75 76 86 87 97 98
52 63 73 83 84 85 95 96 A6 A7
72 82 542 93 94 A4 A5 C4 B6
A2 A3 B3 B4 D3 C5
642 B2 C2 C3 E2 D4
643 752 D2 763 E3
652 842 654 862 F2
762 943 854
843 A42 863
852 872
A43
A52
B42
6542
Cf.
A000720,
A001462,
A007097,
A074971,
A078374,
A112798,
A276625,
A290822,
A304360,
A305713,
A306844.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
A324754
Number of integer partitions of n containing no part > 1 whose prime indices all belong to the partition.
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 7, 8, 11, 12, 19, 19, 30, 34, 46, 50, 71, 76, 104, 119, 151, 171, 225, 247, 315, 360, 446, 504, 629, 703, 867, 986, 1192, 1346, 1636, 1837, 2204, 2500, 2965, 3348, 3980, 4475, 5276, 5963, 6973, 7852, 9194, 10335, 12009, 13536, 15650, 17589
Offset: 0
The a(1) = 1 through a(8) = 11 integer partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (43) (44)
(31) (11111) (42) (52) (62)
(1111) (51) (61) (71)
(222) (331) (422)
(3111) (511) (611)
(111111) (31111) (2222)
(1111111) (3311)
(5111)
(311111)
(11111111)
Cf.
A000837,
A001462,
A007097,
A051424,
A112798,
A276625,
A290822,
A304360,
A306844,
A324695,
A324750,
A324755,
A324760.
-
Table[Length[Select[IntegerPartitions[n],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,30}]
A324760
Heinz numbers of integer partitions not containing 1 or any part whose prime indices all belong to the partition.
Original entry on oeis.org
1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 121, 123, 125, 127, 129, 131, 133, 137, 139
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
35: {3,4}
37: {12}
39: {2,6}
41: {13}
The subset version is
A324739, with maximal case
A324762. The strict integer partition version is
A324750. The integer partition version is
A324755. An infinite version is
A324694.
Cf.
A000720,
A001221,
A007097,
A056239,
A112798,
A289509,
A290822,
A306844,
A324695,
A324696,
A324737,
A324744.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MemberQ[primeMS[#],k_/;SubsetQ[primeMS[#],primeMS[k]]]&]
A324762
Number of maximal subsets of {2...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 8, 8, 16, 16, 16, 16, 16, 16, 32, 32, 40, 40, 52, 52, 64, 64, 72, 72, 144, 144, 176, 176, 200, 200, 232, 232, 464, 464, 464, 464, 536, 536, 1072, 1072, 1072, 1072, 2144, 2144, 2400, 2400, 2400, 2400, 4800, 4800, 4800, 4800, 4800
Offset: 1
The a(2) = 1 through a(9) = 6 maximal subsets:
{2} {2} {2,4} {3,4} {3,4,6} {3,4,6} {3,4,6,8} {2,4,5,6,8}
{3} {3,4} {2,4,5} {2,4,5,6} {3,6,7} {3,6,7,8} {2,5,6,7,8}
{2,4,5,6} {2,4,5,6,8} {3,4,6,8,9}
{2,5,6,7} {2,5,6,7,8} {3,6,7,8,9}
{4,5,6,8,9}
{5,6,7,8,9}
The non-maximal version is
A324739.
The version for subsets of {1...n} is
A324744.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019
A330948
Nonprime numbers whose prime indices are not all prime numbers.
Original entry on oeis.org
4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1
The sequence of terms together with their prime indices of prime indices begins:
4: {{},{}}
6: {{},{1}}
8: {{},{},{}}
10: {{},{2}}
12: {{},{},{1}}
14: {{},{1,1}}
16: {{},{},{},{}}
18: {{},{1},{1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
24: {{},{},{},{1}}
26: {{},{1,2}}
28: {{},{},{1,1}}
30: {{},{1},{2}}
32: {{},{},{},{},{}}
34: {{},{4}}
35: {{2},{1,1}}
36: {{},{},{1},{1}}
38: {{},{1,1,1}}
The restriction to odd terms is
A330949.
Nonprime numbers n such that
A330944(n) > 0.
Taking odds instead of nonprimes gives
A330946.
The number of prime prime indices is given by
A257994.
Primes of nonprime index are
A007821.
Products of primes of nonprime index are
A320628.
The set S of numbers whose prime indices do not all belong to S is
A324694.
Comments