A324738
Number of subsets of {1...n} containing no element > 1 whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 5, 8, 13, 26, 42, 72, 120, 232, 376, 752, 1128, 2256, 4512, 8256, 13632, 27264, 42048, 82944, 158976, 313344, 497664, 995328, 1700352, 3350016, 5815296, 11630592, 17491968, 34983936, 56954880, 108933120, 210788352, 418258944, 804667392, 1609334784
Offset: 0
The a(0) = 1 through a(6) = 26 subsets:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{1,3} {4} {4} {4}
{1,3} {5} {5}
{2,4} {1,3} {6}
{3,4} {1,5} {1,3}
{2,4} {1,5}
{2,5} {1,6}
{3,4} {2,4}
{4,5} {2,5}
{2,4,5} {2,6}
{3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{1,3,6}
{1,5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
The maximal case is
A324744. The case of subsets of {2...n} is
A324739. The strict integer partition version is
A324749. The integer partition version is
A324754. The Heinz number version is
A324759. An infinite version is
A324694.
Cf.
A000720,
A001221,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,0,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324742
Number of subsets of {2...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 2, 3, 6, 10, 16, 24, 48, 84, 144, 228, 420, 648, 1080, 1800, 3600, 5760, 11136, 16704, 31104, 53568, 90624, 136896, 269952, 515712, 862080, 1708800, 3171840, 4832640, 9325440, 14890752, 29781504, 52245504, 88418304, 166017024, 331628544, 497645568, 829409280
Offset: 1
The a(1) = 1 through a(6) = 16 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {3,4}
{2,4,5} {3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{3,4,6}
{4,5,6}
An example for n = 20 is {4,5,6,12,17,18,19}, with prime indices:
4: {1,1}
5: {3}
6: {1,2}
12: {1,1,2}
17: {7}
18: {1,2,2}
19: {8}
None of these prime indices {1,2,3,7,8} belong to the set, as required.
The maximal case is
A324763. The version for subsets of {1...n} is
A324741. The strict integer partition version is
A324752. The integer partition version is
A324757. The Heinz number version is
A324761. An infinite version is
A304360.
Cf.
A000720,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A290689,
A290822,
A306844,
A324764.
-
Table[Length[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1,k,pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitand(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A324763
Number of maximal subsets of {2...n} containing no prime indices of the elements.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 6, 6, 6, 6, 10, 10, 16, 16, 16, 16, 24, 24, 48, 48, 48, 48, 84, 84, 84, 84, 84, 84, 144, 144, 228, 228, 228, 228, 228, 228, 420, 420, 420, 420, 648, 648, 1080, 1080, 1080, 1080, 1800, 1800, 1800, 1800, 1800, 1800, 3600, 3600, 3600, 3600, 3600
Offset: 1
The a(1) = 1 through a(9) = 6 subsets:
{} {2} {2} {2,4} {3,4} {2,4,5} {2,4,5} {2,4,5,8} {2,4,5,8}
{3} {3,4} {2,4,5} {3,4,6} {2,5,7} {2,5,7,8} {2,5,7,8}
{4,5,6} {3,4,6} {3,4,6,8} {3,4,6,8,9}
{3,6,7} {3,6,7,8} {3,6,7,8,9}
{4,5,6} {4,5,6,8} {4,5,6,8,9}
{5,6,7} {5,6,7,8} {5,6,7,8,9}
The non-maximal version is
A324742.
The version for subsets of {1...n} is
A324741.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[2,n]],Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]]],{n,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n-1, k, pset(k+1)>>1), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=my(e=0); forstep(k=#p, 1, -1, if(bittest(b,k), e=bitor(e,p[k]), if(!bittest(e,k) && !bitand(p[k], b), return(0)) )); 1);
((k, b)->if(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 26 2019
A324739
Number of subsets of {2...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 312, 624, 936, 1872, 3744, 7488, 12480, 24960, 37440, 74880, 142848, 285696, 456192, 912384, 1548288, 3096576, 5308416, 10616832, 15925248, 31850496, 51978240, 103956480, 200835072, 401670144, 771489792, 1542979584, 2314469376
Offset: 1
The a(1) = 1 through a(6) = 20 subsets:
{} {} {} {} {} {}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{4} {4} {4}
{2,4} {5} {5}
{3,4} {2,4} {6}
{2,5} {2,4}
{3,4} {2,5}
{4,5} {2,6}
{2,4,5} {3,4}
{3,6}
{4,5}
{4,6}
{5,6}
{2,4,5}
{2,4,6}
{2,5,6}
{3,4,6}
{4,5,6}
{2,4,5,6}
The maximal case is
A324762. The case of subsets of {1...n} is
A324738. The strict integer partition version is
A324750. The integer partition version is
A324755. The Heinz number version is
A324760. An infinite version is
A324694.
Cf.
A000720,
A001221,
A001462,
A007097,
A084422,
A085945,
A112798,
A276625,
A279861,
A290689,
A290822,
A304360,
A306844.
-
Table[Length[Select[Subsets[Range[2,n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]],{n,10}]
-
pset(n)={my(b=0,f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 16 2019
A327471
Number of subsets of {1..n} not containing their mean.
Original entry on oeis.org
1, 1, 2, 4, 10, 22, 48, 102, 214, 440, 900, 1830, 3706, 7486, 15092, 30380, 61100, 122780, 246566, 494912, 992984, 1991620, 3993446, 8005388, 16044460, 32150584, 64414460, 129037790, 258462026, 517641086, 1036616262, 2075721252, 4156096036, 8320912744, 16658202200
Offset: 0
The a(1) = 1 through a(5) = 22 subsets:
{} {} {} {} {}
{1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3}
{2,3} {1,4} {1,4}
{2,3} {1,5}
{2,4} {2,3}
{3,4} {2,4}
{1,2,4} {2,5}
{1,3,4} {3,4}
{1,2,3,4} {3,5}
{4,5}
{1,2,4}
{1,2,5}
{1,3,4}
{1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
Subsets containing their mean are
A065795.
Subsets containing n but not their mean are
A327477.
Partitions not containing their mean are
A327472.
Strict partitions not containing their mean are
A240851.
-
Table[Length[Select[Subsets[Range[n]],!MemberQ[#,Mean[#]]&]],{n,0,10}]
-
from sympy import totient, divisors
def A327471(n): return (1<>(~k&k-1).bit_length(),generator=True))<<1)//k for k in range(1,n+1))>>1) # Chai Wah Wu, Feb 22 2023
A327477
Number of subsets of {1..n} containing n whose mean is not an element.
Original entry on oeis.org
0, 0, 1, 2, 6, 12, 26, 54, 112, 226, 460, 930, 1876, 3780, 7606, 15288, 30720, 61680, 123786, 248346, 498072, 998636, 2001826, 4011942, 8039072, 16106124, 32263876, 64623330, 129424236, 259179060, 518975176, 1039104990, 2080374784, 4164816708, 8337289456
Offset: 0
The a(1) = 1 through a(5) = 12 subsets:
{1,2} {1,3} {1,4} {1,5}
{2,3} {2,4} {2,5}
{3,4} {3,5}
{1,2,4} {4,5}
{1,3,4} {1,2,5}
{1,2,3,4} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
Subsets whose mean is an element are
A065795.
Subsets whose mean is not an element are
A327471.
Subsets containing n whose mean is an element are
A000016.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!MemberQ[#,Mean[#]]&]],{n,0,10}]
-
from sympy import totient, divisors
def A327477(n): return (1<>(~n&n-1).bit_length(),generator=True))//n if n else 0 # Chai Wah Wu, Feb 21 2023
A365071
Number of subsets of {1..n} containing n such that no element is a sum of distinct other elements. A variation of non-binary sum-free subsets without re-usable elements.
Original entry on oeis.org
0, 1, 2, 3, 6, 9, 15, 23, 40, 55, 94, 132, 210, 298, 476, 644, 1038, 1406, 2149, 2965, 4584, 6077, 9426, 12648, 19067, 25739, 38958, 51514, 78459, 104265, 155436, 208329, 312791, 411886, 620780, 823785, 1224414, 1631815, 2437015, 3217077, 4822991
Offset: 0
The subset {1,3,4,6} has 4 = 1 + 3 so is not counted under a(6).
The subset {2,3,4,5,6} has 6 = 2 + 4 and 4 = 1 + 3 so is not counted under a(6).
The a(0) = 0 through a(6) = 15 subsets:
. {1} {2} {3} {4} {5} {6}
{1,2} {1,3} {1,4} {1,5} {1,6}
{2,3} {2,4} {2,5} {2,6}
{3,4} {3,5} {3,6}
{1,2,4} {4,5} {4,6}
{2,3,4} {1,2,5} {5,6}
{1,3,5} {1,2,6}
{2,4,5} {1,3,6}
{3,4,5} {1,4,6}
{2,3,6}
{2,5,6}
{3,4,6}
{3,5,6}
{4,5,6}
{3,4,5,6}
The version with re-usable parts is
A288728 first differences of
A007865.
The complement w/ re-usable parts is
A365070, first differences of
A093971.
A364350 counts combination-free strict partitions, complement
A364839.
-
Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]=={}&]], {n,0,10}]
A317964
Prime numbers in the lexicographically earliest sequence of positive integers whose prime indices are not already in the sequence (A304360).
Original entry on oeis.org
2, 5, 13, 17, 23, 31, 37, 43, 47, 61, 67, 73, 79, 89, 103, 107, 109, 113, 137, 149, 151, 163, 167, 179, 181, 193, 197, 223, 227, 233, 241, 251, 257, 263, 269, 271, 277, 281, 307, 317, 347, 349, 353, 359, 379, 383, 389, 397, 419, 421, 431, 433, 449, 457, 463, 467, 487, 499, 503, 509, 521, 523, 547
Offset: 1
Cf.
A000720,
A001462,
A007097,
A060197,
A079254,
A112798,
A276625,
A277098,
A290822,
A304360,
A306844.
-
count:= 0:
P:= {}: A:= NULL:
for n from 2 while count < 100 do
pn:= numtheory:-factorset(n);
if pn intersect P = {} then
P:= P union {ithprime(n)};
if isprime(n) then A:= A, n; count:= count+1 fi;
fi
od:
A; # Robert Israel, Aug 26 2018
-
aQ[n_]:=n==1||Or@@Cases[FactorInteger[n],{p_,_}:>!aQ[PrimePi[p]]];
Prime[Select[Range[100],aQ]] (* Gus Wiseman, Mar 19 2019 *)
Comments