cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A324852 Number of distinct prime indices of n that divide n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			60060 has 7 prime indices {1,1,2,3,4,5,6}, all of which divide 60060, and 6 of which are distinct, so a(60060) = 6.
		

Crossrefs

The version for all prime indices (counted with multiplicity) is A324848.
Positions of zeros are A324846.
Positions of ones are A323440.

Programs

  • Maple
    a:= n-> add(`if`(irem(n, numtheory[pi](i[1]))=0, 1, 0), i=ifactors(n)[2]):
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 19 2019
  • Mathematica
    Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)[,1]); sum(k=1, #f, !(n % primepi(f[k])));} \\ Michel Marcus, Mar 19 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/(k*prime(k)) = 0.848969... (A124012). - Amiram Eldar, Jan 11 2025

A324926 Numbers not divisible by any prime indices of their prime indices.

Original entry on oeis.org

1, 2, 4, 5, 8, 11, 16, 17, 22, 23, 25, 31, 32, 34, 41, 44, 47, 55, 59, 62, 64, 67, 73, 82, 83, 85, 88, 97, 103, 109, 115, 118, 121, 124, 125, 127, 128, 134, 137, 149, 157, 164, 166, 167, 176, 179, 187, 191, 194, 197, 205, 211, 218, 227, 233, 235, 236, 241, 242
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. For example, the prime indices of 55 are {3,5} with prime indices {{2},{3}}. Since 55 is not divisible by 2 or 3, it belongs to the sequence.

Examples

			The sequence of multisets of multisets whose MM-numbers (see A302242) belong to the sequence begins:
   1: {}
   2: {{}}
   4: {{},{}}
   5: {{2}}
   8: {{},{},{}}
  11: {{3}}
  16: {{},{},{},{}}
  17: {{4}}
  22: {{},{3}}
  23: {{2,2}}
  25: {{2},{2}}
  31: {{5}}
  32: {{},{},{},{},{}}
  34: {{},{4}}
  41: {{6}}
  44: {{},{},{3}}
  47: {{2,3}}
  55: {{2},{3}}
  59: {{7}}
  62: {{},{5}}
  64: {{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@Table[!Divisible[#,i],{i,Union@@primeMS/@primeMS[#]}]&]

A324934 Inverse permutation to A324931.

Original entry on oeis.org

1, 2, 4, 3, 10, 6, 9, 5, 12, 15, 35, 8, 24, 14, 26, 7, 41, 17, 23, 20, 25, 47, 52, 13, 58, 34, 28, 19, 79, 37, 184, 11, 87, 61, 53, 22, 56, 33, 60, 30, 145, 36, 92, 70, 65, 75, 164, 18, 51, 82, 98, 46, 54, 39, 178, 29, 59, 106, 293, 49, 122, 245, 63, 16, 125
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Crossrefs

A324856 Numbers divisible by exactly one of their prime indices.

Original entry on oeis.org

2, 10, 14, 15, 22, 26, 34, 38, 45, 46, 50, 55, 58, 62, 70, 74, 82, 86, 94, 98, 105, 106, 118, 119, 122, 130, 134, 135, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 195, 202, 206, 207, 214, 218, 226, 230, 242, 250, 254, 255, 262, 266, 274, 275, 278, 285
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

Numbers n such that A324848(n) = 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If k is in A324846, then k*prime(k) is in the sequence. - Robert Israel, Mar 22 2019

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
  10: {1,3}
  14: {1,4}
  15: {2,3}
  22: {1,5}
  26: {1,6}
  34: {1,7}
  38: {1,8}
  45: {2,2,3}
  46: {1,9}
  50: {1,3,3}
  55: {3,5}
  58: {1,10}
  62: {1,11}
  70: {1,3,4}
  74: {1,12}
  82: {1,13}
  86: {1,14}
  94: {1,15}
  98: {1,4,4}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= select(t -> n mod numtheory:-pi(t[1])=0, ifactors(n)[2]);
      nops(F)=1 and F[1][2]=1
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Mar 22 2019
  • Mathematica
    Select[Range[100],Total[Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k/;Divisible[#,PrimePi[p]]]]==1&]

A324770 Number of fully anti-transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 13, 27, 58, 128, 286, 640, 1452, 3308, 7594, 17512, 40591, 94449, 220672
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root. It is an identity tree if there are no repeated branches directly under the same root.

Examples

			The a(1) = 1 through a(7) = 6 fully anti-transitive rooted identity trees:
  o  (o)  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o(o(o))))
                          ((((o))))  ((o((o))))   ((((o(o)))))
                                     (((((o)))))  (((o)((o))))
                                                  (((o((o)))))
                                                  ((o(((o)))))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],Intersection[Union@@Rest[FixedPointList[Union@@#&,#]],#]=={}&]],{n,10}]

A324853 First number divisible by n of its own distinct prime indices.

Original entry on oeis.org

1, 2, 6, 30, 330, 4290, 60060, 1021020, 29609580, 917896980, 33962188260, 1290563153880, 52913089309080, 2275262840290440, 106937353493650680, 6309303856125390120, 422723358360401138040, 30013358443588480800840, 2190975166381959098461320
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
a(n) is the first position of n in A324852.

Examples

			a(6) = 60060 = 2^2 * 3 * 5 * 7 * 11 * 13 has prime indices {1,1,2,3,4,5,6}, and is less than any other number divisible by six of its own distinct prime indices.
		

Crossrefs

Programs

  • C
    See Links section.
    
  • Mathematica
    nn=10000;
    With[{mgs=Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,nn}]},Table[Position[mgs,i][[1,1]],{i,0,5}]]
  • PARI
    isok(k,n) = {my(f=factor(k)[,1]); sum(j=1, #f, !(k % primepi(f[j]))) == n;}
    a(n) = {my(k=1); while (!isok(k, n), k++); k;} \\ Michel Marcus, Mar 20 2019

Extensions

a(8)-a(9) from Rémy Sigrist, Mar 19 2019
a(10)-a(18) from Michel Lagneau, Aug 19 2019

A323440 Numbers divisible by exactly one of their distinct prime indices.

Original entry on oeis.org

2, 4, 8, 10, 14, 15, 16, 20, 22, 26, 32, 34, 38, 40, 44, 45, 46, 50, 52, 55, 58, 62, 64, 68, 70, 74, 75, 76, 80, 82, 86, 88, 92, 94, 98, 100, 104, 105, 106, 116, 118, 119, 122, 124, 128, 130, 134, 135, 136, 142, 146, 148, 154, 158, 160, 164, 166, 170, 172, 176
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

Numbers n such that A324852(n) = 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   8: {1,1,1}
  10: {1,3}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  20: {1,1,3}
  22: {1,5}
  26: {1,6}
  32: {1,1,1,1,1}
  34: {1,7}
  38: {1,8}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  46: {1,9}
  50: {1,3,3}
  52: {1,1,6}
  55: {3,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Count[If[#==1,{},FactorInteger[#]],{p_,_}/;Divisible[#,PrimePi[p]]]==1&]
  • PARI
    isok(n) = my(f=factor(n)[,1]); sum(k=1, #f, (n % primepi(f[k])) == 0) == 1; \\ Michel Marcus, Mar 22 2019

A324771 Numbers divisible by at least one of their prime indices > 1.

Original entry on oeis.org

6, 12, 15, 18, 24, 28, 30, 36, 42, 45, 48, 54, 55, 56, 60, 66, 72, 75, 78, 84, 90, 96, 102, 105, 108, 110, 112, 114, 119, 120, 126, 132, 135, 138, 140, 144, 150, 152, 156, 162, 165, 168, 174, 180, 186, 192, 195, 196, 198, 204, 207, 210, 216, 220, 222, 224, 225
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  12: {1,1,2}
  15: {2,3}
  18: {1,2,2}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  45: {2,2,3}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  55: {3,5}
  56: {1,1,1,4}
  60: {1,1,2,3}
  66: {1,2,5}
  72: {1,1,1,2,2}
  75: {2,3,3}
  78: {1,2,6}
  84: {1,1,2,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_?(#>2&),_}:>Divisible[#,PrimePi[p]]]&]

A324769 Matula-Goebel numbers of fully anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 129, 131, 133, 137, 139, 143, 147
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root.

Examples

			The sequence of fully anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  13: ((o(o)))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  29: ((o((o))))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  37: ((oo(o)))
  41: (((o(o))))
  43: ((o(oo)))
  47: (((o)((o))))
  49: ((oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fullantiQ[n_]:=Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={};
    Select[Range[100],fullantiQ]

A324839 Number of unlabeled rooted identity trees with n nodes where the branches of no branch of the root form a subset of the branches of the root.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 8, 16, 35, 74, 166, 367, 831, 1878, 4299, 9857, 22775, 52777, 122957, 287337
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

An unlabeled rooted tree is an identity tree if there are no repeated branches directly under the same root.
Also the number of finitary sets with n brackets where no element is also a subset. For example, the a(7) = 8 sets are (o = {}):
{{{{{{o}}}}}}
{{{{o,{o}}}}}
{{{o,{{o}}}}}
{{o,{{{o}}}}}
{{o,{o,{o}}}}
{{{o},{{o}}}}
{{o},{{{o}}}}
{{o},{o,{o}}}

Examples

			The a(1) = 1 through a(8) = 16 rooted identity trees:
  o  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o)(o(o)))    (((o))(o(o)))
                     ((((o))))  ((o((o))))   ((o(o(o))))    (((o)(o(o))))
                                (((((o)))))  ((((o(o)))))   (((o(o(o)))))
                                             (((o)((o))))   ((o)((o(o))))
                                             (((o((o)))))   ((o)(o((o))))
                                             ((o)(((o))))   ((o((o(o)))))
                                             ((o(((o)))))   ((o(o)((o))))
                                             ((((((o))))))  ((o(o((o)))))
                                                            (((((o(o))))))
                                                            ((((o)((o)))))
                                                            ((((o((o))))))
                                                            (((o)(((o)))))
                                                            (((o(((o))))))
                                                            ((o)((((o)))))
                                                            ((o((((o))))))
                                                            (((((((o)))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],And@@Table[!SubsetQ[#,b],{b,#}]&]],{n,10}]
Previous Showing 11-20 of 24 results. Next