cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A325278 Smallest number with adjusted frequency depth n.

Original entry on oeis.org

1, 2, 4, 6, 12, 60, 2520, 1286485200, 35933692027611398678865941374040400000
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
Differs from A182857 in having 2 instead of 3.

Crossrefs

A subsequence of A325238.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    nn=10000;
    fd[n_]:=Switch[n,1,0,?PrimeQ,1,,1+fd[Times@@Prime/@Last/@FactorInteger[n]]];
    fds=fd/@Range[nn];
    Sort[Table[Position[fds,x][[1,1]],{x,Union[fds]}]]

A330997 Sorted list containing the least number with each possible nonzero number of factorizations into distinct factors > 1.

Original entry on oeis.org

1, 6, 12, 24, 48, 60, 64, 96, 120, 144, 180, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 720, 840, 864, 900, 960, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 2048, 2160, 2304, 2310, 2520, 2592, 2880, 3072, 3360, 3456, 3600, 3840, 4320
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2020

Keywords

Examples

			The strict factorizations of a(n) for n = 1..9.
  {}  6    12   24     48     60      64     96      120
      2*3  2*6  3*8    6*8    2*30    2*32   2*48    2*60
           3*4  4*6    2*24   3*20    4*16   3*32    3*40
                2*12   3*16   4*15    2*4*8  4*24    4*30
                2*3*4  4*12   5*12           6*16    5*24
                       2*3*8  6*10           8*12    6*20
                       2*4*6  2*5*6          2*6*8   8*15
                              3*4*5          3*4*8   10*12
                              2*3*10         2*3*16  3*5*8
                                             2*4*12  4*5*6
                                                     2*3*20
                                                     2*4*15
                                                     2*5*12
                                                     2*6*10
                                                     3*4*10
                                                     2*3*4*5
		

Crossrefs

All terms belong to A025487.
Strict factorizations are A045778, with image A045779.
The unsorted version is A045780.
The non-strict version is A330972.
The least number with n strict factorizations is A330974.

Programs

  • Mathematica
    nn=1000;
    strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
    nds=Length/@Array[strfacs,nn];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A353742 Sorted prime metasignature of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 20 2022

Keywords

Comments

The prime metasignature counts the multiplicities of each value in the prime signature of n. For example, 2520 has prime indices {1,1,1,2,2,3,4}, sorted prime signature {1,1,2,3}, and sorted prime metasignature {1,1,2}.

Examples

			The prime indices, sorted prime signatures, and sorted prime metasignatures of selected n:
      n = 1: {}             -> {}         -> {}
      n = 2: {1}            -> {1}        -> {1}
      n = 6: {1,2}          -> {1,1}      -> {2}
     n = 12: {1,1,2}        -> {1,2}      -> {1,1}
     n = 30: {1,2,3}        -> {1,1,1}    -> {3}
     n = 60: {1,1,2,3}      -> {1,1,2}    -> {1,2}
    n = 210: {1,2,3,4}      -> {1,1,1,1}  -> {4}
    n = 360: {1,1,1,2,2,3}  -> {1,2,3}    -> {1,1,1}
		

Crossrefs

Row-sums are A001221.
Row-lengths are A071625.
Positions of first appearances are A182863.
This is the sorted version of A238747.
Row-products are A353507.
A001222 counts prime factors with multiplicity.
A003963 gives product of prime indices.
A005361 gives product of prime signature, firsts A353500 (sorted A085629).
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with strict signature, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.

Programs

  • Mathematica
    Join@@Table[Sort[Length/@Split[Sort[Last/@If[n==1,{},FactorInteger[n]]]]],{n,100}]

A325258 a(1) = 1; otherwise, first differences of Levine's sequence A011784.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 28, 171, 2624, 172613, 139584150, 6837485347187, 266437138079023501057, 508009471379222384299345337895696, 37745517525533091954228691786161750063795478326636142, 5347426383812697233786139576220412396732847744407175515852823296919414647252347610750
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

a(n) is the number of nonnegative integers k such that the maximum adjusted frequency depth among integer partitions of k is n. For example, the a(5) = 7 numbers are 7, 8, 9, 10, 11, 12, and 13.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is A323014(n). The maximum adjusted frequency depth for partitions of n is A325282(n).

Crossrefs

Programs

  • Mathematica
    grw[q_]:=Join@@Table[ConstantArray[i,q[[Length[q]-i+1]]],{i,Length[q]}];
    ReplacePart[Differences[Last/@NestList[grw,{1,1},9]],2->1]

A353500 Numbers that are the smallest number with product of prime exponents k for some k. Sorted positions of first appearances in A005361, unsorted version A085629.

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1152, 1296, 1728, 2048, 2592, 3456, 5184, 7776, 8192, 10368, 13824, 15552, 18432, 20736, 31104, 41472, 55296, 62208, 73728, 86400, 108000, 129600, 131072, 165888, 194400, 216000, 221184, 259200, 279936, 324000
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

All terms are highly powerful (A005934), but that sequence looks only at first appearances that reach a record, and is missing 1152, 2048, 8192, etc.

Examples

			The prime exponents of 86400 are (7,3,2), and this is the first case of product 42, so 86400 is in the sequence.
		

Crossrefs

These are the positions of first appearances in A005361, counted by A266477.
This is the sorted version of A085629.
The version for shadows instead of exponents is A353397, firsts in A353394.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices, counted by A339095.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime exponents, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
Subsequence of A181800.

Programs

  • Mathematica
    nn=1000;
    d=Table[Times@@Last/@FactorInteger[n],{n,nn}];
    Select[Range[nn],!MemberQ[Take[d,#-1],d[[#]]]&]
    lps[fct_] := Module[{nf = Length[fct]}, Times @@ (Prime[Range[nf]]^Reverse[fct])]; lps[{1}] = 1; q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, (n == 1 || AllTrue[e, # > 1 &]) && n == Min[lps /@ f[Times @@ e]]]; Select[Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]], q] (* Amiram Eldar, Sep 29 2024, using the function f by T. D. Noe at A162247 *)

A050322 Number of factorizations indexed by prime signatures: A001055(A025487).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 5, 7, 9, 12, 11, 11, 16, 19, 21, 15, 29, 26, 30, 15, 31, 38, 22, 47, 52, 45, 36, 57, 64, 30, 77, 98, 67, 74, 97, 66, 105, 42, 109, 118, 92, 109, 171, 97, 141, 162, 137, 165, 56, 212, 181, 52, 198, 189, 289, 139, 250, 257, 269, 254, 77, 382, 267
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

For A025487(m) = 2^k = A000079(k), we have a(m) = A000041(k).
Is a(k) = A000110(k) for A025487(m) = A002110(k)?

Examples

			From _Gus Wiseman_, Jan 13 2020: (Start)
The a(1) = 1 through a(11) = 9 factorizations:
  {}  2  4    6    8      12     16       24       30     32         36
         2*2  2*3  2*4    2*6    2*8      3*8      5*6    4*8        4*9
                   2*2*2  3*4    4*4      4*6      2*15   2*16       6*6
                          2*2*3  2*2*4    2*12     3*10   2*2*8      2*18
                                 2*2*2*2  2*2*6    2*3*5  2*4*4      3*12
                                          2*3*4           2*2*2*4    2*2*9
                                          2*2*2*3         2*2*2*2*2  2*3*6
                                                                     3*3*4
                                                                     2*2*3*3
(End)
		

Crossrefs

The version indexed by unsorted prime signature is A331049.
The version indexed by prime shadow (A181819, A181821) is A318284.
This sequence has range A045782 (same as A001055).

Programs

  • Maple
    A050322 := proc(n)
        A001055(A025487(n)) ;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    c[1, r_] := c[1, r] = 1; c[n_, r_] := c[n, r] = Module[{d, i}, d = Select[Divisors[n], 1 < # <= r &]; Sum[c[n/d[[i]], d[[i]]], {i, 1, Length[d]}]]; Map[c[#, #] &, Union@ Table[Times @@ MapIndexed[If[n == 1, 1, Prime[First@ #2]]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]], {n, Product[Prime@ i, {i, 6}]}]] (* Michael De Vlieger, Jul 10 2017, after Dean Hickerson at A001055 *)
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Length/@facs/@First/@GatherBy[Range[1000],If[#==1,{},Sort[Last/@FactorInteger[#]]]&] (* Gus Wiseman, Jan 13 2020 *)

A330998 Sorted list containing the least number whose inverse prime shadow (A181821) has each possible nonzero number of factorizations into factors > 1.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

This is the sorted list of positions of first appearances in A318284 of each element of the range A045782.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.

Examples

			Factorizations of the inverse prime shadows of the initial terms:
    4    8      12     16       36       24       60       48
    2*2  2*4    2*6    2*8      4*9      3*8      2*30     6*8
         2*2*2  3*4    4*4      6*6      4*6      3*20     2*24
                2*2*3  2*2*4    2*18     2*12     4*15     3*16
                       2*2*2*2  3*12     2*2*6    5*12     4*12
                                2*2*9    2*3*4    6*10     2*3*8
                                2*3*6    2*2*2*3  2*5*6    2*4*6
                                3*3*4             3*4*5    3*4*4
                                2*2*3*3           2*2*15   2*2*12
                                                  2*3*10   2*2*2*6
                                                  2*2*3*5  2*2*3*4
                                                           2*2*2*2*3
The corresponding multiset partitions:
    {11}    {111}      {112}      {1111}        {1122}        {1112}
    {1}{1}  {1}{11}    {1}{12}    {1}{111}      {1}{122}      {1}{112}
            {1}{1}{1}  {2}{11}    {11}{11}      {11}{22}      {11}{12}
                       {1}{1}{2}  {1}{1}{11}    {12}{12}      {2}{111}
                                  {1}{1}{1}{1}  {2}{112}      {1}{1}{12}
                                                {1}{1}{22}    {1}{2}{11}
                                                {1}{2}{12}    {1}{1}{1}{2}
                                                {2}{2}{11}
                                                {1}{1}{2}{2}
		

Crossrefs

Taking n instead of the inverse prime shadow of n gives A330972.
Factorizations are A001055, with image A045782, with complement A330976.
Factorizations of inverse prime shadows are A318284.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    nds=Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,50}];
    Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]

A182863 Members m of A025487 such that, if k appears in m's prime signature, k-1 appears at least as often as k (for any integer k > 1).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 210, 360, 420, 1260, 2310, 2520, 4620, 13860, 27720, 30030, 60060, 75600, 138600, 180180, 360360, 510510, 831600, 900900, 1021020, 1801800, 3063060, 6126120, 9699690, 10810800, 15315300, 19399380, 30630600, 37837800
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

Members m of A025487 such that A181819(m) is also a member of A025487.
If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A181818.
Also the least number with each sorted prime metasignature, where a number's metasignature is the sequence of multiplicities of exponents in its prime factorization. For example, 2520 has prime indices {1,1,1,2,2,3,4}, sorted prime signature {1,1,2,3}, and sorted prime metasignature {1,1,2}. - Gus Wiseman, May 21 2022

Examples

			The prime signature of 360360 = 2^3*3^2*5*7*11*13 is (3,2,1,1,1,1). 2 appears as many times as 3 in 360360's prime signature, and 1 appears more times than 2. Since 360360 is also a member of A025487, it is a member of this sequence.
From _Gus Wiseman_, May 21 2022: (Start)
The terms together with their sorted prime signatures and sorted prime metasignatures begin:
      1: {}                -> {}            -> {}
      2: {1}               -> {1}           -> {1}
      6: {1,2}             -> {1,1}         -> {2}
     12: {1,1,2}           -> {1,2}         -> {1,1}
     30: {1,2,3}           -> {1,1,1}       -> {3}
     60: {1,1,2,3}         -> {1,1,2}       -> {1,2}
    210: {1,2,3,4}         -> {1,1,1,1}     -> {4}
    360: {1,1,1,2,2,3}     -> {1,2,3}       -> {1,1,1}
    420: {1,1,2,3,4}       -> {1,1,1,2}     -> {1,3}
   1260: {1,1,2,2,3,4}     -> {1,1,2,2}     -> {2,2}
   2310: {1,2,3,4,5}       -> {1,1,1,1,1}   -> {5}
   2520: {1,1,1,2,2,3,4}   -> {1,1,2,3}     -> {1,1,2}
   4620: {1,1,2,3,4,5}     -> {1,1,1,1,2}   -> {1,4}
  13860: {1,1,2,2,3,4,5}   -> {1,1,1,2,2}   -> {2,3}
  27720: {1,1,1,2,2,3,4,5} -> {1,1,1,2,3}   -> {1,1,3}
  30030: {1,2,3,4,5,6}     -> {1,1,1,1,1,1} -> {6}
  60060: {1,1,2,3,4,5,6}   -> {1,1,1,1,1,2} -> {1,5}
(End)
		

Crossrefs

Intersection of A025487 and A179983.
Subsequence of A129912 and A181826.
Includes all members of A182862.
Positions of first appearances in A353742, unordered version A238747.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A005361 gives product of prime signature, firsts A353500 (sorted A085629).
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A182850 gives frequency depth of prime indices, counted by A225485.
A323014 gives adjusted frequency depth of prime indices, counted by A325280.

Programs

  • Mathematica
    nn=1000;
    r=Table[Sort[Length/@Split[Sort[Last/@If[n==1,{},FactorInteger[n]]]]],{n,nn}];
    Select[Range[nn],!MemberQ[Take[r,#-1],r[[#]]]&] (* Gus Wiseman, May 21 2022 *)

A330992 Least positive integer with exactly prime(n) factorizations into factors > 1, or 0 if no such integer exists.

Original entry on oeis.org

4, 8, 16, 24, 60, 0, 0, 96, 0, 144, 216, 0, 0, 0, 288, 0, 0, 0, 768, 0, 0, 0, 0, 0, 864, 8192, 0, 0, 1080, 0, 0, 0, 1800, 3072, 0, 0, 0, 0, 0, 0, 0, 2304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3456, 0, 3600, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24576
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Examples

			Factorizations of the initial positive terms are:
  4    8      16       24       60       96
  2*2  2*4    2*8      3*8      2*30     2*48
       2*2*2  4*4      4*6      3*20     3*32
              2*2*4    2*12     4*15     4*24
              2*2*2*2  2*2*6    5*12     6*16
                       2*3*4    6*10     8*12
                       2*2*2*3  2*5*6    2*6*8
                                3*4*5    3*4*8
                                2*2*15   4*4*6
                                2*3*10   2*2*24
                                2*2*3*5  2*3*16
                                         2*4*12
                                         2*2*3*8
                                         2*2*4*6
                                         2*3*4*4
                                         2*2*2*12
                                         2*2*2*2*6
                                         2*2*2*3*4
                                         2*2*2*2*2*3
		

Crossrefs

All positive terms belong to A025487 and also A033833.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of partitions is prime are A046063.
Numbers whose number of strict partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers with a prime number of factorizations are A330991.
The least number with exactly 2^n factorizations is A330989(n).

Extensions

More terms from Jinyuan Wang, Jul 07 2021

A325274 Sum of the omega-sequence of n!.

Original entry on oeis.org

0, 0, 1, 5, 9, 13, 14, 20, 23, 25, 24, 30, 33, 35, 35, 40, 44, 46, 49, 51, 54, 56, 59, 61, 65, 67, 72, 75, 78, 80, 83, 85, 90, 90, 95, 97, 101, 103, 105, 106, 110, 112, 115, 117, 122, 125, 127, 129, 134, 136, 139, 140, 143, 145, 149, 153, 157, 159, 160, 162
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), with sum 13.

Crossrefs

a(n) = A056239(A325275(n)).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Total[omseq[n!]],{n,0,100}]
Previous Showing 11-20 of 33 results. Next