cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A181818 Products of superprimorials (A006939).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 360, 384, 512, 576, 720, 768, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 11520, 12288, 13824, 16384, 17280, 18432, 20736, 23040, 24576, 27648, 32768
Offset: 1

Views

Author

Matthew Vandermast, Nov 30 2010

Keywords

Comments

Sorted list of positive integers with a factorization Product p(i)^e(i) such that (e(1) - e(2)) >= (e(2) - e(3)) >= ... >= (e(k-1) - e(k)) >= e(k), with k = A001221(n), and p(k) = A006530(n) = A000040(k), i.e., the prime factors p(1) .. p(k) must be consecutive primes from 2 onward. - Comment clarified by Antti Karttunen, Apr 28 2022
Subsequence of A025487. A025487(n) belongs to this sequence iff A181815(n) is a member of A025487.
If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A182863. - Matthew Vandermast, May 20 2012

Examples

			2, 12, and 360 are all superprimorials (i.e., members of A006939). Therefore, 2*2*12*360 = 17280 is included in the sequence.
From _Gus Wiseman_, Aug 12 2020 (Start):
The sequence of factorizations (which are unique) begins:
    1 = empty product
    2 = 2
    4 = 2*2
    8 = 2*2*2
   12 = 12
   16 = 2*2*2*2
   24 = 2*12
   32 = 2*2*2*2*2
   48 = 2*2*12
   64 = 2*2*2*2*2*2
   96 = 2*2*2*12
  128 = 2*2*2*2*2*2*2
  144 = 12*12
  192 = 2*2*2*2*12
  256 = 2*2*2*2*2*2*2*2
(End)
		

Crossrefs

A181817 rearranged in numerical order. Also includes all members of A000079, A001021, A006939, A009968, A009992, A066120, A166475, A167448, A181813, A181814, A181816, A182763.
Subsequence of A025487, A055932, A087980, A130091, A181824.
A001013 is the version for factorials.
A336426 is the complement.
A336496 is the version for superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A317829 counts factorizations of superprimorials.
Cf. A022915, A076954, A304686, A325368, A336419, A336420, A336421, A353518 (characteristic function).

Programs

  • Mathematica
    Select[Range[100],PrimePi[First/@If[#==1,{}, FactorInteger[#]]]==Range[ PrimeNu[#]]&&LessEqual@@Differences[ Append[Last/@FactorInteger[#],0]]&] (* Gus Wiseman, Aug 12 2020 *)
  • PARI
    firstdiffs0forward(vec) = { my(v=vector(#vec)); for(n=1,#v,v[n] = vec[n]-if(#v==n,0,vec[1+n])); (v); };
    A353518(n) = if(1==n,1,my(f=factor(n), len=#f~); if(primepi(f[len,1])!=len, return(0), my(diffs=firstdiffs0forward(f[,2])); for(i=1,#diffs-1,if(diffs[i+1]>diffs[i],return(0))); (1)));
    isA181818(n) = A353518(n); \\ Antti Karttunen, Apr 28 2022

A353742 Sorted prime metasignature of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 20 2022

Keywords

Comments

The prime metasignature counts the multiplicities of each value in the prime signature of n. For example, 2520 has prime indices {1,1,1,2,2,3,4}, sorted prime signature {1,1,2,3}, and sorted prime metasignature {1,1,2}.

Examples

			The prime indices, sorted prime signatures, and sorted prime metasignatures of selected n:
      n = 1: {}             -> {}         -> {}
      n = 2: {1}            -> {1}        -> {1}
      n = 6: {1,2}          -> {1,1}      -> {2}
     n = 12: {1,1,2}        -> {1,2}      -> {1,1}
     n = 30: {1,2,3}        -> {1,1,1}    -> {3}
     n = 60: {1,1,2,3}      -> {1,1,2}    -> {1,2}
    n = 210: {1,2,3,4}      -> {1,1,1,1}  -> {4}
    n = 360: {1,1,1,2,2,3}  -> {1,2,3}    -> {1,1,1}
		

Crossrefs

Row-sums are A001221.
Row-lengths are A071625.
Positions of first appearances are A182863.
This is the sorted version of A238747.
Row-products are A353507.
A001222 counts prime factors with multiplicity.
A003963 gives product of prime indices.
A005361 gives product of prime signature, firsts A353500 (sorted A085629).
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with strict signature, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.

Programs

  • Mathematica
    Join@@Table[Sort[Length/@Split[Sort[Last/@If[n==1,{},FactorInteger[n]]]]],{n,100}]

A212167 Numbers k such that the maximum exponent in its prime factorization is not greater than the number of positive exponents (A051903(k) <= A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212166 and A212168. Includes numerous subsequences that are subsequences of neither A212166 nor A212168.

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although the 1 is often left implicit).  2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 does not belong to the sequence. But 10 = 2^1*5^1 and 20 = 2^2*5^1 belong, since the maximal exponents in their prime factorizations are 1 and 2 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212164. See also A212165.
Subsequences (none of which are subsequences of A212166 or A212168) include A002110, A051451, A129912, A179983, A181826, A181827, A182862, A182863. Includes all members of A003418.

Programs

  • Haskell
    import Data.List (findIndices)
    a212167 n = a212167_list !! (n-1)
    a212167_list = map (+ 1) $ findIndices (>= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Maple
    isA212167 := proc(n)
        simplify(A051903(n) <= A001221(n)) ;
    end proc:
    for n from 1 to 1000 do
        if isA212167(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 06 2021
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] <= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) <= #e; } \\ Amiram Eldar, Sep 09 2024

Formula

A225230(a(n)) >= 0; A050326(a(n)) > 0. - Reinhard Zumkeller, May 03 2013

A182862 Numbers k that set a record for the number of distinct prime signatures represented among their unitary divisors.

Original entry on oeis.org

1, 2, 6, 12, 60, 360, 1260, 2520, 27720, 138600, 360360, 831600, 10810800, 75675600, 183783600, 1286485200, 24443218800, 38594556000, 424540116000, 733296564000, 8066262204000, 185524030692000, 1693915062840000, 5380196890068000, 38960046445320000, 166786103592108000
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

In other words, the sequence includes k iff A182860(k) > A182860(m) for all m < k.
The records for the number of distinct prime signatures are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 60, 64, 72, 80, 96, ... (see the link for more values). - Amiram Eldar, Jul 07 2019

Examples

			60 has 8 unitary divisors (1, 3, 4, 5, 12, 15, 20 and 60). Primes 3 and 5 have the same prime signature, as do 12 (2^2*3) and 20 (2^2*5); each of the other four numbers listed is the only unitary divisor of 60 with its particular prime signature.  This makes a total of 6 distinct prime signatures that appear among the unitary divisors of 60.  Since no positive integer smaller than 60 has more than 4 distinct prime signatures appearing among its unitary divisors, 60 belongs to this sequence.
		

Crossrefs

Subsequence of A025487, A129912, A181826, A182863. See also A034444, A085082, A182860, A182861.

Programs

  • Mathematica
    f[1] = 1; f[n_] := Times @@ (Values[Counts[FactorInteger[n][[;; , 2]]]] + 1); fm = 0; s={}; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 1, 10^6}]; s (* Amiram Eldar, Jan 19 2019 *)

Extensions

a(14)-a(26) from Amiram Eldar, Jan 19 2019

A179983 Positive integers m such that, if k appears in m's prime signature, k-1 appears at least as often as k (for any integer k > 1).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Matthew Vandermast, Jan 15 2011

Keywords

Comments

Numbers m such that A181819(m) is a term of A025487.

Examples

			The prime signature of 20 = 2^2*5 is (2,1). Since the largest number appearing in 20's prime signature is 2, and 1 appears as many times as 2, 20 is a member of this sequence.
		

Crossrefs

Includes all squarefree numbers (A005117); also includes all members of A054753, A085987, A163569, A182862, A182863.

Programs

  • Maple
    isA179983 := proc(n)
        local es,me,k ;
        # list of exponents in prime signature
        es := [seq(op(2,pe), pe =ifactors(n)[2])] ;
        # maximum exponent
        me := max(op(es)) ;
        for k from me to 2 by -1 do
            if numboccur(es,k-1) < numboccur(es,k) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 1 to 100 do
        if isA179983(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Mar 21 2023
  • Mathematica
    q[n_] := Module[{t = SortBy[Tally[FactorInteger[n][[;; , 2]]], First], t1, t2}, t1 = t[[;; , 1]]; t2 = t[[;; , 2]]; Sort[t1] == Range[Length[t1]] && Max[Differences[t2]] < 1]; Select[Range[100], q] (* Amiram Eldar, Aug 04 2024 *)

A328830 The second prime shadow of n: a(1) = 1; for n > 1, a(n) = a(A003557(n)) * prime(A056169(n)) when A056169(n) > 0, otherwise a(n) = a(A003557(n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 2, 4, 2, 5, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 2, 5, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 6, 2, 3, 4, 2, 3, 5, 2, 4, 3, 5, 2, 4, 2, 3, 4, 4, 3, 5, 2, 4, 2, 3, 2, 6, 3, 3, 3, 4, 2, 6, 3, 4, 3, 3, 3, 4, 2, 4, 4, 3, 2, 5, 2, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2019

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487).

Examples

			For n = 30 = 2 * 3 * 5, there are three unitary prime factors, while A003557(30) = 1, which terminates the recursion, thus a(30) = prime(3) = 5.
For n = 60060 = 2^2 * 3 * 5 * 7 * 11 * 13, there are 5 unitary prime factors, while in A003557(60060) = 2 there is only one, thus a(60060) = prime(5) * prime(1) = 11 * 2 = 22.
The number 1260 = 2^2*3^2*5*7 has prime exponents (2,2,1,1) so its prime shadow is prime(2)*prime(2)*prime(1)*prime(1) = 36.  Next, 36 = 2^2*3^2 has prime exponents (2,2) so its prime shadow is prime(2)*prime(2) = 9. In fact, the term a(1260) = 9 is the first appearance of 9 in the sequence. - _Gus Wiseman_, Apr 28 2022
		

Crossrefs

Column 2 of A353510.
Differs from A182860 for the first time at a(30) = 5, while A182860(30) = 4.
Cf. A182863 for the first appearances.
A005361 gives product of prime exponents.
A112798 gives prime indices, sum A056239.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A008578(1+A056169(n)) * a(A003557(n)).
A001221(a(n)) = A323022(n).
A001222(a(n)) = A071625(n).
a(n) = A181819(A181819(n)). - Gus Wiseman, Apr 27 2022

Extensions

Added Gus Wiseman's new name to the front of the definition. - Antti Karttunen, Apr 27 2022
Showing 1-7 of 7 results.