cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A335433 Numbers whose multiset of prime indices is separable.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2020

Keywords

Comments

First differs from A212167 in having 72.
Includes all squarefree numbers A005117.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of separable partitions (A325534). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also numbers that cannot be written as a product of prime numbers, each different from the last but not necessarily different from those prior to the last.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          20: {1,1,3}       39: {2,6}
      2: {1}         21: {2,4}         41: {13}
      3: {2}         22: {1,5}         42: {1,2,4}
      5: {3}         23: {9}           43: {14}
      6: {1,2}       26: {1,6}         44: {1,1,5}
      7: {4}         28: {1,1,4}       45: {2,2,3}
     10: {1,3}       29: {10}          46: {1,9}
     11: {5}         30: {1,2,3}       47: {15}
     12: {1,1,2}     31: {11}          50: {1,3,3}
     13: {6}         33: {2,5}         51: {2,7}
     14: {1,4}       34: {1,7}         52: {1,1,6}
     15: {2,3}       35: {3,4}         53: {16}
     17: {7}         36: {1,1,2,2}     55: {3,5}
     18: {1,2,2}     37: {12}          57: {2,8}
     19: {8}         38: {1,8}         58: {1,10}
		

Crossrefs

The version for a multiset with prescribed multiplicities is A335127.
Separable factorizations are counted by A335434.
The complement is A335448.
Separations are counted by A003242 and A335452 and ranked by A333489.
Permutations of prime indices are counted by A008480.
Inseparable partitions are counted by A325535.
Strict permutations of prime indices are counted by A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Permutations[primeMS[#]],!MatchQ[#,{_,x_,x_,_}]&]!={}&]

A050326 Number of factorizations of n into distinct squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2, 0, 1, 4, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).
a(A212164(n)) = 0; a(A212166(n)) = 1; a(A006881(n)) = 2; a(A190107(n)) = 3; a(A085987(n)) = 4; a(A225228(n)) = 5; a(A179670(n)) = 7; a(A162143(n)) = 8; a(A190108(n)) = 11; a(A212167(n)) > 0; a(A212168(n)) > 1. - Reinhard Zumkeller, May 03 2013
The comment that a(A212164(n)) = 0 is incorrect. For example, 3600 belongs to A212164 but a(3600) = 1. The positions of zeros in this sequence are A293243. - Gus Wiseman, Oct 10 2017

Examples

			The a(30) = 5 factorizations are: 2*3*5, 2*15, 3*10, 5*6, 30. The a(180) = 5 factorizations are: 2*3*5*6, 2*3*30, 2*6*15, 3*6*10, 6*30. - _Gus Wiseman_, Oct 10 2017
		

Crossrefs

Cf. A001055, A005117, A045778, A046523, A050320, A050327, a(p^k)=0 (p>1), a(A002110)=A000110, a(n!)=A103775(n), A206778, A293243.

Programs

  • Haskell
    import Data.List (subsequences, genericIndex)
    a050326 n = genericIndex a050326_list (n-1)
    a050326_list = 1 : f 2 where
       f x = (if x /= s then a050326 s
                        else length $ filter (== x) $ map product $
                             subsequences $ tail $ a206778_row x) : f (x + 1)
             where s = a046523 x
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    N:= 1000: # to get a(1)..a(N)
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
         S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    convert(A,list); # Robert Israel, Oct 10 2017
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[n]],{n,100}] (* Gus Wiseman, Oct 10 2017 *)

Formula

Dirichlet g.f.: prod{n is squarefree and > 1}(1+1/n^s).
a(n) = A050327(A101296(n)). - R. J. Mathar, May 26 2017

A345172 Numbers whose multiset of prime factors has an alternating permutation.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A212167 in containing 72.
First differs from A335433 in lacking 270, corresponding to the partition (3,2,2,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          20: {1,1,3}       39: {2,6}
      2: {1}         21: {2,4}         41: {13}
      3: {2}         22: {1,5}         42: {1,2,4}
      5: {3}         23: {9}           43: {14}
      6: {1,2}       26: {1,6}         44: {1,1,5}
      7: {4}         28: {1,1,4}       45: {2,2,3}
     10: {1,3}       29: {10}          46: {1,9}
     11: {5}         30: {1,2,3}       47: {15}
     12: {1,1,2}     31: {11}          50: {1,3,3}
     13: {6}         33: {2,5}         51: {2,7}
     14: {1,4}       34: {1,7}         52: {1,1,6}
     15: {2,3}       35: {3,4}         53: {16}
     17: {7}         36: {1,1,2,2}     55: {3,5}
     18: {1,2,2}     37: {12}          57: {2,8}
     19: {8}         38: {1,8}         58: {1,10}
		

Crossrefs

Including squares of primes A001248 gives A344742, counted by A344740.
This is a subset of A335433, which is counted by A325534.
Positions of nonzero terms in A345164.
The partitions with these Heinz numbers are counted by A345170.
The complement is A345171, which is counted by A345165.
A345173 = A345171 /\ A335433 is counted by A345166.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344606 counts alternating permutations of prime indices with twins.
A345192 counts non-alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1;
    Select[Range[100],Select[Permutations[ Flatten[ConstantArray@@@FactorInteger[#]]],wigQ[#]&]!={}&]

Formula

Complement of A001248 (squares of primes) in A344742.

A212166 Numbers k such that the maximum exponent in its prime factorization equals the number of positive exponents (A051903(k) = A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Examples

			36 = 2^2*3^2 has 2 positive exponents in its prime factorization. The maximal exponent in its prime factorization is also 2. Therefore, 36 belongs to this sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Includes subsequences A000040, A006939, A138534, A181555, A181825.
Cf. A001221, A050326, A051903, A188654 (complement), A225230.

Programs

  • Haskell
    import Data.List (elemIndices)
    a212166 n = a212166_list !! (n-1)
    a212166_list = map (+ 1) $ elemIndices 0 a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] == Length[f]]; Select[Range[424], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) == #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) = 0; A050326(a(n)) = 1. - Reinhard Zumkeller, May 03 2013

A339741 Products of distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2020

Keywords

Comments

First differs from A212167 in lacking 1080, with prime indices {1,1,1,2,2,2,3}.
First differs from A335433 in lacking 72 (see example).
A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons and strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes;
(3) the prime signature of n is half-loop-graphical.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}           20: {1,1,3}        39: {2,6}
       2: {1}          21: {2,4}          41: {13}
       3: {2}          22: {1,5}          42: {1,2,4}
       5: {3}          23: {9}            43: {14}
       6: {1,2}        26: {1,6}          44: {1,1,5}
       7: {4}          28: {1,1,4}        45: {2,2,3}
      10: {1,3}        29: {10}           46: {1,9}
      11: {5}          30: {1,2,3}        47: {15}
      12: {1,1,2}      31: {11}           50: {1,3,3}
      13: {6}          33: {2,5}          51: {2,7}
      14: {1,4}        34: {1,7}          52: {1,1,6}
      15: {2,3}        35: {3,4}          53: {16}
      17: {7}          36: {1,1,2,2}      55: {3,5}
      18: {1,2,2}      37: {12}           57: {2,8}
      19: {8}          38: {1,8}          58: {1,10}
For example, we have 36 = (2*3*6), so 36 is in the sequence. On the other hand, a complete list of all strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72). Since none of these consists of only primes or squarefree semiprimes, 72 is not in the sequence. A complete list of all factorizations of 1080 into primes or squarefree semiprimes is:
  (2*2*2*3*3*3*5)
  (2*2*2*3*3*15)
  (2*2*3*3*3*10)
  (2*2*3*3*5*6)
  (2*2*3*6*15)
  (2*3*3*6*10)
  (2*3*5*6*6)
  (2*6*6*15)
  (3*6*6*10)
  (5*6*6*6)
Since none of these is strict, 1080 is not in the sequence.
		

Crossrefs

See link for additional cross-references.
Allowing only primes gives A013929.
Not allowing primes gives A339561.
Complement of A339740.
Positions of positive terms in A339742.
Allowing squares of primes gives the complement of A339840.
Unlabeled multiset partitions of this type are counted by A339888.
A001055 counts factorizations.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A339841 have exactly one factorization into primes or semiprimes.

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqps[#]!={}&]

A382075 Numbers whose prime indices can be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2025

Keywords

Comments

First differs from A212167 in having 3600.
First differs from A335433 in lacking 72.
First differs from A339741 in having 1080.
First differs from A345172 in lacking 72.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers that can be written as a product of squarefree numbers with distinct sums of prime indices.

Examples

			The prime indices of 1080 are {1,1,1,2,2,2,3}, and {{1},{2},{1,2},{1,2,3}} is a partition into a set of sets with distinct sums, so 1080 is in the sequence.
		

Crossrefs

Twice-partitions of this type are counted by A279785, see also A358914.
These are positions of terms > 0 in A381633, see A321469, A381078, A381634.
For constant instead of strict blocks see A381635, A381636, A381716.
Normal multiset partitions into sets with distinct sums are counted by A381718.
The complement is A381806, counted by A381990.
The case of a unique choice is A381870, counted by A382079, see A382078.
Partitions of this type are counted by A381992.
For distinct blocks instead of block-sums we have A382200, complement A293243.
MM-numbers of multiset partitions into sets with distinct sums are A382201.
Normal multisets of this type are counted by A382216, see also A382214.
A001055 counts multiset partitions of prime indices, strict A045778.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Select[Range[100],Length[Select[mps[prix[#]], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]

A382200 Numbers that can be written as a product of distinct squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2025

Keywords

Comments

First differs from A339741 in having 1080.
First differs from A382075 in having 18000.
These are positions of positive terms in A050326, complement A293243.
Also numbers whose prime indices can be partitioned into distinct sets.
Differs from A212167, which does not include 18000 = 2^4*3^2*5^3, for example. - R. J. Mathar, Mar 23 2025

Examples

			The prime indices of 1080 are {1,1,1,2,2,2,3}, and {{1},{2},{1,2},{1,2,3}} is a partition into a set of sets, so 1080 is in the sequence.
We have 18000 = 2*5*6*10*30, so 18000 is in the sequence.
		

Crossrefs

Twice-partitions of this type are counted by A279785, see also A358914.
Normal multisets not of this type are counted by A292432, strong A292444.
The complement is A293243, counted by A050342.
The case of a unique choice is A293511.
MM-numbers of multiset partitions into distinct sets are A302494.
For distinct block-sums instead of blocks we have A382075, counted by A381992.
Partitions of this type are counted by A382077, complement A382078.
Normal multisets of this type are counted by A382214, strong A381996.
A001055 counts multiset partitions of prime indices, strict A045778.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
          S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    remove(t -> A[t]=0, [$1..N]); # Robert Israel, Apr 21 2025
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[100],Length[sqfacs[#]]>0&]

A212168 Numbers n such that the maximal exponent in its prime factorization is less than the number of positive exponents (A051903(n) < A001221(n)).

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142, 143
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

A225230(a(n)) > 1; A050326(a(n)) > 1. - Reinhard Zumkeller, May 03 2013
Subsequence of A130092. - Ivan N. Ianakiev, Sep 17 2019

Examples

			10 = 2^1*5^1 has 2 distinct prime factors, hence 2 positive exponents in its prime factorization (although the 1s are often left implicit). 2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 belongs to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212165. See also A212164, A212166-A212167.
Subsequence of A188654.

Programs

  • Haskell
    import Data.List (findIndices)
    a212168 n = a212168_list !! (n-1)
    a212168_list = map (+ 1) $ findIndices (> 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] < Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
    Select[Range[200],Max[FactorInteger[#][[All,2]]]Harvey P. Dale, Nov 21 2018 *)
  • PARI
    is(n,f=factor(n))=my(e=f[,2]); #e && vecmax(e)<#e \\ Charles R Greathouse IV, Jan 09 2022

A212164 Numbers k such that the maximum exponent in its prime factorization is greater than the number of positive exponents (A051903(k) > A001221(k)).

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (namely, 3 and 1, although the 1 is often left implicit).   2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 belongs to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212167.
See also A212165, A212166, A212168.
Subsequence of A188654.

Programs

  • Haskell
    import Data.List (elemIndices)
    a212164 n = a212164_list !! (n-1)
    a212164_list = map (+ 1) $ findIndices (< 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] > Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); #e && vecmax(e) > #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) < 0; A050326(a(n)) = 0. - Reinhard Zumkeller, May 03 2013

A212165 Numbers k such that the maximum exponent in its prime factorization is not less than the number of positive exponents (A051903(k) >= A001221(k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 100, 101, 103, 104
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212164 and A212166. Includes numerous subsequences that are subsequences of neither A212164 nor A212166.
Includes all factorials except A000142(3) = 6.
Observation: all terms in DATA section are also the first 65 numbers n whose difference between the arithmetic derivative of n and the sum of the divisors of n is nonnegative. - Omar E. Pol, Dec 19 2012

Examples

			10 = 2^1*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although 1s are often left implicit).  2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 does not belong to the sequence. But 20 = 2^2*5^1 and 40 = 2^3*5^1 belong, since the largest exponents in their prime factorizations are 2 and 3 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212168.
See also A212167.
Subsequences (none of which are subsequences of A212164 or A212166) include A000079, A001021, A066120, A087980, A130091, A141586, A166475, A181818, A181823, A181824, A182763, A212169. Also includes all terms in A181813 and A181814.

Programs

  • Haskell
    import Data.List (findIndices)
    a212165 n = a212165_list !! (n-1)
    a212165_list = map (+ 1) $ findIndices (<= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] >= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) >= #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) <= 0. - Reinhard Zumkeller, May 03 2013
Showing 1-10 of 11 results. Next