A381432 Heinz numbers of section-sum partitions. Union of A381431.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 10: {1,3} 11: {5} 13: {6} 14: {1,4} 15: {2,3} 16: {1,1,1,1} 17: {7} 19: {8} 20: {1,1,3} 22: {1,5} 23: {9} 25: {3,3} 26: {1,6} 27: {2,2,2}
Crossrefs
A122111 represents conjugation in terms of Heinz numbers.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]]; Select[Range[100],MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]
Comments