cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A381432 Heinz numbers of section-sum partitions. Union of A381431.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

First differs from A320340, A364347, A350838 in containing 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   22: {1,5}
   23: {9}
   25: {3,3}
   26: {1,6}
   27: {2,2,2}
		

Crossrefs

Partitions of this type are counted by A239455, complement A351293.
The conjugate is A351294, union of A048767 (parts A381440, fixed A048768, A217605).
Union of A381431 (parts A381436).
The complement is A381433, conjugate A351295.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]

A050326 Number of factorizations of n into distinct squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2, 0, 1, 4, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).
a(A212164(n)) = 0; a(A212166(n)) = 1; a(A006881(n)) = 2; a(A190107(n)) = 3; a(A085987(n)) = 4; a(A225228(n)) = 5; a(A179670(n)) = 7; a(A162143(n)) = 8; a(A190108(n)) = 11; a(A212167(n)) > 0; a(A212168(n)) > 1. - Reinhard Zumkeller, May 03 2013
The comment that a(A212164(n)) = 0 is incorrect. For example, 3600 belongs to A212164 but a(3600) = 1. The positions of zeros in this sequence are A293243. - Gus Wiseman, Oct 10 2017

Examples

			The a(30) = 5 factorizations are: 2*3*5, 2*15, 3*10, 5*6, 30. The a(180) = 5 factorizations are: 2*3*5*6, 2*3*30, 2*6*15, 3*6*10, 6*30. - _Gus Wiseman_, Oct 10 2017
		

Crossrefs

Cf. A001055, A005117, A045778, A046523, A050320, A050327, a(p^k)=0 (p>1), a(A002110)=A000110, a(n!)=A103775(n), A206778, A293243.

Programs

  • Haskell
    import Data.List (subsequences, genericIndex)
    a050326 n = genericIndex a050326_list (n-1)
    a050326_list = 1 : f 2 where
       f x = (if x /= s then a050326 s
                        else length $ filter (== x) $ map product $
                             subsequences $ tail $ a206778_row x) : f (x + 1)
             where s = a046523 x
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    N:= 1000: # to get a(1)..a(N)
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
         S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    convert(A,list); # Robert Israel, Oct 10 2017
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[n]],{n,100}] (* Gus Wiseman, Oct 10 2017 *)

Formula

Dirichlet g.f.: prod{n is squarefree and > 1}(1+1/n^s).
a(n) = A050327(A101296(n)). - R. J. Mathar, May 26 2017

A293511 Numbers that can be written as a product of distinct squarefree numbers in exactly one way.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Oct 11 2017

Keywords

Comments

First differs from A212166 at a(128) = 363, A212166(128) = 360.

Examples

			360 is not in the sequence because it has two possible expressions: 2*3*6*10 or 2*6*30.
		

Crossrefs

Programs

  • Mathematica
    nn=300;
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[nn],Length[sqfacs[#]]===1&]

A381431 Heinz number of the section-sum partition of the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 10, 13, 11, 11, 16, 17, 15, 19, 14, 13, 13, 23, 20, 25, 17, 27, 22, 29, 13, 31, 32, 17, 19, 17, 25, 37, 23, 19, 28, 41, 17, 43, 26, 33, 29, 47, 40, 49, 35, 23, 34, 53, 45, 19, 44, 29, 31, 59, 26, 61, 37, 39, 64, 23, 19, 67, 38
Offset: 1

Views

Author

Gus Wiseman, Feb 26 2025

Keywords

Comments

The image first differs from A320340, A364347, A350838 in containing a(150) = 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			Prime indices of 180 are (3,2,2,1,1), with section-sum partition (6,3), so a(180) = 65.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
   7: {4}
  11: {5}
  10: {1,3}
  13: {6}
  11: {5}
  11: {5}
  16: {1,1,1,1}
		

Crossrefs

The conjugate is A048767, union A351294, complement A351295, fix A048768 (count A217605).
Taking length instead of sum in the definition gives A238745, conjugate A181819.
Partitions of this type are counted by A239455, complement A351293.
The union is A381432, complement A381433.
Values appearing only once are A381434, more than once A381435.
These are the Heinz numbers of rows of A381436, conjugate A381440.
Greatest prime index of each term is A381437, counted by A381438.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[Times@@Prime/@egs[prix[n]],{n,100}]

Formula

A122111(a(n)) = A048767(n).

A381870 Numbers whose prime indices have a unique multiset partition into sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2025

Keywords

Comments

First differs from A212166 in lacking 360.
First differs from A293511 in having 600.
Also numbers with a unique factorization into squarefree numbers with distinct sums of prime indices (A056239).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			For n = 600 the unique multiset partition is {{1},{1,3},{1,2,3}}. The unique factorization is 2*10*30.
		

Crossrefs

Without distinct block-sums we have A000961, ones in A050320.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
For distinct blocks instead of sums we have A293511, ones in A050326.
These are the positions of ones in A381633, see A381634, A381806, A381990.
Normal multiset partitions of this type are counted by A381718, see A279785.
For constant instead of strict blocks we have A381991, ones in A381635.
A001055 counts multiset partitions of prime indices, strict A045778.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A317141 counts coarsenings of prime indices, refinements A300383.
A321469 counts factorizations with distinct sums of prime indices, ones A166684.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[100],Length[Select[sfacs[#],UnsameQ@@hwt/@#&]]==1&]

A381440 Irregular triangle read by rows where row k is the Look-and-Say partition of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

Row lengths are A066328.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The prime indices of 24 are (2,1,1,1), with Look-and-Say partition (3,1,1), so row 24 is (3,1,1).
The prime indices of 36 are (2,2,1,1), with Look-and-Say partition (2,2,2), so row 36 is (2,2,2).
Triangle begins:
   1: (empty)
   2: 1
   3: 1 1
   4: 2
   5: 1 1 1
   6: 1 1 1
   7: 1 1 1 1
   8: 3
   9: 2 2
  10: 1 1 1 1
  11: 1 1 1 1 1
  12: 2 1 1
  13: 1 1 1 1 1 1
  14: 1 1 1 1 1
  15: 1 1 1 1 1
  16: 4
  17: 1 1 1 1 1 1 1
  18: 2 2 1
  19: 1 1 1 1 1 1 1 1
		

Crossrefs

Heinz numbers are A048767 (union A351294, complement A351295, fixed A048768, A217605).
First part in each row is A051903, conjugate A066328.
Last part in each row is A051904, conjugate A381437 (counted by A381438).
Row sums are A056239.
Row lengths are A066328.
Partitions of this type are counted by A239455, complement A351293.
The conjugate is A381436, Heinz numbers A381431 (union A381432, complement A381433).
Rows appearing only once have Heinz numbers A381540, more than once A381541.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    Table[Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>ConstantArray[k,PrimePi[p]]]]//Reverse,{n,30}]

A212168 Numbers n such that the maximal exponent in its prime factorization is less than the number of positive exponents (A051903(n) < A001221(n)).

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142, 143
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

A225230(a(n)) > 1; A050326(a(n)) > 1. - Reinhard Zumkeller, May 03 2013
Subsequence of A130092. - Ivan N. Ianakiev, Sep 17 2019

Examples

			10 = 2^1*5^1 has 2 distinct prime factors, hence 2 positive exponents in its prime factorization (although the 1s are often left implicit). 2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 belongs to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212165. See also A212164, A212166-A212167.
Subsequence of A188654.

Programs

  • Haskell
    import Data.List (findIndices)
    a212168 n = a212168_list !! (n-1)
    a212168_list = map (+ 1) $ findIndices (> 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] < Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
    Select[Range[200],Max[FactorInteger[#][[All,2]]]Harvey P. Dale, Nov 21 2018 *)
  • PARI
    is(n,f=factor(n))=my(e=f[,2]); #e && vecmax(e)<#e \\ Charles R Greathouse IV, Jan 09 2022

A212164 Numbers k such that the maximum exponent in its prime factorization is greater than the number of positive exponents (A051903(k) > A001221(k)).

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (namely, 3 and 1, although the 1 is often left implicit).   2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 belongs to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212167.
See also A212165, A212166, A212168.
Subsequence of A188654.

Programs

  • Haskell
    import Data.List (elemIndices)
    a212164 n = a212164_list !! (n-1)
    a212164_list = map (+ 1) $ findIndices (< 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] > Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); #e && vecmax(e) > #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) < 0; A050326(a(n)) = 0. - Reinhard Zumkeller, May 03 2013

A212167 Numbers k such that the maximum exponent in its prime factorization is not greater than the number of positive exponents (A051903(k) <= A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212166 and A212168. Includes numerous subsequences that are subsequences of neither A212166 nor A212168.

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although the 1 is often left implicit).  2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 does not belong to the sequence. But 10 = 2^1*5^1 and 20 = 2^2*5^1 belong, since the maximal exponents in their prime factorizations are 1 and 2 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212164. See also A212165.
Subsequences (none of which are subsequences of A212166 or A212168) include A002110, A051451, A129912, A179983, A181826, A181827, A182862, A182863. Includes all members of A003418.

Programs

  • Haskell
    import Data.List (findIndices)
    a212167 n = a212167_list !! (n-1)
    a212167_list = map (+ 1) $ findIndices (>= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Maple
    isA212167 := proc(n)
        simplify(A051903(n) <= A001221(n)) ;
    end proc:
    for n from 1 to 1000 do
        if isA212167(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 06 2021
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] <= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) <= #e; } \\ Amiram Eldar, Sep 09 2024

Formula

A225230(a(n)) >= 0; A050326(a(n)) > 0. - Reinhard Zumkeller, May 03 2013

A384006 Heinz numbers of Look-and-Say partitions without distinct multiplicities (non Wilf).

Original entry on oeis.org

216, 1000, 1296, 2744, 3375, 7776, 9261, 10000, 10648, 17576, 32400, 35937, 38416, 38880, 39304, 42875, 46656, 50625, 54000, 54432, 54872, 59319, 63504, 81000, 85536, 90000, 97336, 100000
Offset: 1

Views

Author

Gus Wiseman, May 19 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different, ranked by A130091, complement A130092.
An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.

Examples

			The terms together with their prime indices begin:
     216: {1,1,1,2,2,2}
    1000: {1,1,1,3,3,3}
    1296: {1,1,1,1,2,2,2,2}
    2744: {1,1,1,4,4,4}
    3375: {2,2,2,3,3,3}
    7776: {1,1,1,1,1,2,2,2,2,2}
    9261: {2,2,2,4,4,4}
   10000: {1,1,1,1,3,3,3,3}
   10648: {1,1,1,5,5,5}
   17576: {1,1,1,6,6,6}
   32400: {1,1,1,1,2,2,2,2,3,3}
   35937: {2,2,2,5,5,5}
   38416: {1,1,1,1,4,4,4,4}
   38880: {1,1,1,1,1,2,2,2,2,2,3}
   39304: {1,1,1,7,7,7}
   42875: {3,3,3,4,4,4}
   46656: {1,1,1,1,1,1,2,2,2,2,2,2}
   50625: {2,2,2,2,3,3,3,3}
   54000: {1,1,1,1,2,2,2,3,3,3}
   54432: {1,1,1,1,1,2,2,2,2,2,4}
   54872: {1,1,1,8,8,8}
   59319: {2,2,2,6,6,6}
   63504: {1,1,1,1,2,2,2,2,4,4}
   81000: {1,1,1,2,2,2,2,3,3,3}
   85536: {1,1,1,1,1,2,2,2,2,2,5}
   90000: {1,1,1,1,2,2,3,3,3,3}
   97336: {1,1,1,9,9,9}
  100000: {1,1,1,1,1,3,3,3,3,3}
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are counted by A351592.
For section-sum instead of Look-and-Say we have (A383514), counted by A383506.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A383511 counts partitions that are Look-and-Say and section-sum but not Wilf (A383518).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],disjointFamilies[prix[#]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&]
Showing 1-10 of 34 results. Next