cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A335448 Numbers whose prime indices are inseparable.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 80, 81, 88, 96, 104, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351, 352
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

First differs from A212164 in lacking 72.
First differs from A293243 in lacking 72.
No terms are squarefree.
Also Heinz numbers of inseparable partitions (A325535). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are also numbers that can be written as a product of prime numbers, each different from the last but not necessarily different from those prior to the last.
A multiset is inseparable iff its maximal multiplicity is greater than one plus the sum of its remaining multiplicities.

Examples

			The sequence of terms together with their prime indices begins:
   4: {1,1}
   8: {1,1,1}
   9: {2,2}
  16: {1,1,1,1}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
  32: {1,1,1,1,1}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  80: {1,1,1,1,3}
  81: {2,2,2,2}
  88: {1,1,1,5}
  96: {1,1,1,1,1,2}
		

Crossrefs

Complement of A335433.
Separations are counted by A003242 and A335452 and ranked by A333489.
Permutations of prime indices are counted by A008480.
Inseparable partitions are counted by A325535.
Strict permutations of prime indices are counted by A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Permutations[primeMS[#]],!MatchQ[#,{_,x_,x_,_}]&]=={}&]

A050326 Number of factorizations of n into distinct squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2, 0, 1, 4, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 5, 1
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).
a(A212164(n)) = 0; a(A212166(n)) = 1; a(A006881(n)) = 2; a(A190107(n)) = 3; a(A085987(n)) = 4; a(A225228(n)) = 5; a(A179670(n)) = 7; a(A162143(n)) = 8; a(A190108(n)) = 11; a(A212167(n)) > 0; a(A212168(n)) > 1. - Reinhard Zumkeller, May 03 2013
The comment that a(A212164(n)) = 0 is incorrect. For example, 3600 belongs to A212164 but a(3600) = 1. The positions of zeros in this sequence are A293243. - Gus Wiseman, Oct 10 2017

Examples

			The a(30) = 5 factorizations are: 2*3*5, 2*15, 3*10, 5*6, 30. The a(180) = 5 factorizations are: 2*3*5*6, 2*3*30, 2*6*15, 3*6*10, 6*30. - _Gus Wiseman_, Oct 10 2017
		

Crossrefs

Cf. A001055, A005117, A045778, A046523, A050320, A050327, a(p^k)=0 (p>1), a(A002110)=A000110, a(n!)=A103775(n), A206778, A293243.

Programs

  • Haskell
    import Data.List (subsequences, genericIndex)
    a050326 n = genericIndex a050326_list (n-1)
    a050326_list = 1 : f 2 where
       f x = (if x /= s then a050326 s
                        else length $ filter (== x) $ map product $
                             subsequences $ tail $ a206778_row x) : f (x + 1)
             where s = a046523 x
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    N:= 1000: # to get a(1)..a(N)
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
         S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    convert(A,list); # Robert Israel, Oct 10 2017
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[n]],{n,100}] (* Gus Wiseman, Oct 10 2017 *)

Formula

Dirichlet g.f.: prod{n is squarefree and > 1}(1+1/n^s).
a(n) = A050327(A101296(n)). - R. J. Mathar, May 26 2017

A293243 Numbers that cannot be written as a product of distinct squarefree numbers.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2017

Keywords

Comments

First differs from A212164 at a(441).
Numbers n such that A050326(n) = 0. - Felix Fröhlich, Oct 04 2017
Includes A246547, and all numbers of the form p^a*q^b where p and q are primes, a >= 1 and b >= 3. - Robert Israel, Oct 10 2017
Also numbers whose prime indices cannot be partitioned into a set of sets. For example, the prime indices of 90 are {1,2,2,3}, and we have sets of sets: {{2},{1,2,3}}, {{1,2},{2,3}}, {{1},{2},{2,3}}, {{2},{3},{1,2}}, so 90 is not in the sequence. - Gus Wiseman, Apr 28 2025

Examples

			120 is not in the sequence because 120 = 2*6*10. 3600 is not in the sequence because 3600 = 2*6*10*30.
		

Crossrefs

These are the zeros of A050326.
Multiset partitions of this type (set of sets) are counted by A050342.
Twice-partitions of this type (set of sets) are counted by A279785, see also A358914.
Normal multisets of this type are counted by A292432, A292444, A381996, A382214.
The case of a unique choice is A293511, counted by A382079.
For distinct block-sums instead of blocks see A381806, A381990, A381992, A382075.
Partitions of this type are counted by A382078.
The complement is A382200, counted by A382077.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers.
A050345 counts factorizations partitioned into into distinct sets.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
          S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    select(t -> A[t]=0, [$1..N]); # Robert Israel, Oct 10 2017
  • Mathematica
    nn=500;
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[nn],Length[sqfacs[#]]===0&]

A212166 Numbers k such that the maximum exponent in its prime factorization equals the number of positive exponents (A051903(k) = A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Examples

			36 = 2^2*3^2 has 2 positive exponents in its prime factorization. The maximal exponent in its prime factorization is also 2. Therefore, 36 belongs to this sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Includes subsequences A000040, A006939, A138534, A181555, A181825.
Cf. A001221, A050326, A051903, A188654 (complement), A225230.

Programs

  • Haskell
    import Data.List (elemIndices)
    a212166 n = a212166_list !! (n-1)
    a212166_list = map (+ 1) $ elemIndices 0 a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] == Length[f]]; Select[Range[424], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) == #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) = 0; A050326(a(n)) = 1. - Reinhard Zumkeller, May 03 2013

A381806 Numbers that cannot be written as a product of squarefree numbers with distinct sums of prime indices.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2025

Keywords

Comments

First differs from A212164 in having 3600.
First differs from A293243 in having 18000.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers whose prime indices cannot be partitioned into a multiset of sets with distinct sums.

Examples

			There are 4 factorizations of 18000 into squarefree numbers:
  (2*2*3*5*10*30)
  (2*2*5*6*10*15)
  (2*2*10*15*30)
  (2*5*6*10*30)
but none of these has all distinct sums of prime indices, so 18000 is in the sequence.
		

Crossrefs

Strongly normal multisets of this type are counted by A292444.
These are the zeros in A381633, see A050320, A321469, A381078, A381634.
For distinct blocks see A050326, A293243, A293511, A358914, A381441.
For more on set multipartitions see A089259, A116540, A270995, A296119, A318360.
For more on set multipartitions with distinct sums see A279785, A381718.
For constant instead of strict blocks we have A381636, see A381635, A381716.
Partitions of this type are counted by A381990, complement A381992.
The complement is A382075.
A001055 counts multiset partitions, strict A045778.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sqfics[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfics[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]]
    Select[Range[nn],Length[Select[sqfics[#],UnsameQ@@hwt/@#&]]==0&]

A212168 Numbers n such that the maximal exponent in its prime factorization is less than the number of positive exponents (A051903(n) < A001221(n)).

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140, 141, 142, 143
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

A225230(a(n)) > 1; A050326(a(n)) > 1. - Reinhard Zumkeller, May 03 2013
Subsequence of A130092. - Ivan N. Ianakiev, Sep 17 2019

Examples

			10 = 2^1*5^1 has 2 distinct prime factors, hence 2 positive exponents in its prime factorization (although the 1s are often left implicit). 2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 belongs to the sequence.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212165. See also A212164, A212166-A212167.
Subsequence of A188654.

Programs

  • Haskell
    import Data.List (findIndices)
    a212168 n = a212168_list !! (n-1)
    a212168_list = map (+ 1) $ findIndices (> 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] < Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
    Select[Range[200],Max[FactorInteger[#][[All,2]]]Harvey P. Dale, Nov 21 2018 *)
  • PARI
    is(n,f=factor(n))=my(e=f[,2]); #e && vecmax(e)<#e \\ Charles R Greathouse IV, Jan 09 2022

A212167 Numbers k such that the maximum exponent in its prime factorization is not greater than the number of positive exponents (A051903(k) <= A001221(k)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212166 and A212168. Includes numerous subsequences that are subsequences of neither A212166 nor A212168.

Examples

			40 = 2^3*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although the 1 is often left implicit).  2 is less than the maximal exponent in 40's prime factorization, which is 3. Therefore, 40 does not belong to the sequence. But 10 = 2^1*5^1 and 20 = 2^2*5^1 belong, since the maximal exponents in their prime factorizations are 1 and 2 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212164. See also A212165.
Subsequences (none of which are subsequences of A212166 or A212168) include A002110, A051451, A129912, A179983, A181826, A181827, A182862, A182863. Includes all members of A003418.

Programs

  • Haskell
    import Data.List (findIndices)
    a212167 n = a212167_list !! (n-1)
    a212167_list = map (+ 1) $ findIndices (>= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Maple
    isA212167 := proc(n)
        simplify(A051903(n) <= A001221(n)) ;
    end proc:
    for n from 1 to 1000 do
        if isA212167(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 06 2021
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] <= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) <= #e; } \\ Amiram Eldar, Sep 09 2024

Formula

A225230(a(n)) >= 0; A050326(a(n)) > 0. - Reinhard Zumkeller, May 03 2013

A212165 Numbers k such that the maximum exponent in its prime factorization is not less than the number of positive exponents (A051903(k) >= A001221(k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 100, 101, 103, 104
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Union of A212164 and A212166. Includes numerous subsequences that are subsequences of neither A212164 nor A212166.
Includes all factorials except A000142(3) = 6.
Observation: all terms in DATA section are also the first 65 numbers n whose difference between the arithmetic derivative of n and the sum of the divisors of n is nonnegative. - Omar E. Pol, Dec 19 2012

Examples

			10 = 2^1*5^1 has 2 distinct prime factors, hence, 2 positive exponents in its prime factorization (although 1s are often left implicit).  2 is larger than the maximal exponent in 10's prime factorization, which is 1. Therefore, 10 does not belong to the sequence. But 20 = 2^2*5^1 and 40 = 2^3*5^1 belong, since the largest exponents in their prime factorizations are 2 and 3 respectively.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A212168.
See also A212167.
Subsequences (none of which are subsequences of A212164 or A212166) include A000079, A001021, A066120, A087980, A130091, A141586, A166475, A181818, A181823, A181824, A182763, A212169. Also includes all terms in A181813 and A181814.

Programs

  • Haskell
    import Data.List (findIndices)
    a212165 n = a212165_list !! (n-1)
    a212165_list = map (+ 1) $ findIndices (<= 0) a225230_list
    -- Reinhard Zumkeller, May 03 2013
    
  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] >= Length[f]]; Select[Range[1000], okQ] (* T. D. Noe, May 24 2012 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); !(#e) || vecmax(e) >= #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A225230(a(n)) <= 0. - Reinhard Zumkeller, May 03 2013

A339740 Non-products of distinct primes or squarefree semiprimes.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

Differs from A293243 and A212164 in having 1080, with prime indices {1,1,1,2,2,2,3} and factorization into distinct squarefree numbers 2*3*6*30.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}             80: {1,1,1,1,3}
      8: {1,1,1}           81: {2,2,2,2}
      9: {2,2}             88: {1,1,1,5}
     16: {1,1,1,1}         96: {1,1,1,1,1,2}
     24: {1,1,1,2}        104: {1,1,1,6}
     25: {3,3}            108: {1,1,2,2,2}
     27: {2,2,2}          112: {1,1,1,1,4}
     32: {1,1,1,1,1}      121: {5,5}
     40: {1,1,1,3}        125: {3,3,3}
     48: {1,1,1,1,2}      128: {1,1,1,1,1,1,1}
     49: {4,4}            135: {2,2,2,3}
     54: {1,2,2,2}        136: {1,1,1,7}
     56: {1,1,1,4}        144: {1,1,1,1,2,2}
     64: {1,1,1,1,1,1}    152: {1,1,1,8}
     72: {1,1,1,2,2}      160: {1,1,1,1,1,3}
For example, a complete list of strict factorizations of 72 is: (2*3*12), (2*4*9), (2*36), (3*4*6), (3*24), (4*18), (6*12), (8*9), (72); but since none of these consists of only primes or squarefree semiprimes, 72 is in the sequence.
		

Crossrefs

A013929 allows only primes.
A320894 does not allow primes (but omega is assumed even).
A339741 is the complement.
A339742 has zeros at these positions.
A339840 allows squares of primes.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339661 into distinct squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339617 counts non-graphical partitions of 2n (A339618).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 counts all of even length (A028260).
- A096373/A339737 cannot be partitioned into strict pairs (A320891).
- A338915/A339662 cannot be partitioned into distinct pairs (A320892).
- A339559/A339564 cannot be partitioned into distinct strict pairs (A320894).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Select[Range[100],sqps[#]=={}&]

A188654 Numbers k such that the maximum exponent in its prime factorization does not equal the number of positive exponents (A051903(k) <> A001221(k)).

Original entry on oeis.org

4, 6, 8, 9, 10, 14, 15, 16, 21, 22, 24, 25, 26, 27, 30, 32, 33, 34, 35, 38, 39, 40, 42, 46, 48, 49, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 69, 70, 72, 74, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 102, 104, 105, 106, 108, 110, 111
Offset: 1

Views

Author

Reinhard Zumkeller, May 03 2013

Keywords

Crossrefs

Cf. A001221, A212166 (complement), A225230.
Union of A212164 and A212168.

Programs

  • Haskell
    import Data.List (findIndices)
    a188654 n = a188654_list !! (n-1)
    a188654_list = map (+ 1) $ findIndices (/= 0) a225230_list
    
  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, Max[e] != Length[e]]; q[1] = False; Select[Range[120], q] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    is(k) = {my(e = factor(k)[, 2]); #e && vecmax(e) != #e;} \\ Amiram Eldar, Sep 08 2024

Formula

A051903(n) <> A001221(n);
A225230(a(n)) <> 0.
Showing 1-10 of 11 results. Next