cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A383530 Number of non Wilf and non conjugate Wilf integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 2, 5, 12, 14, 19, 35, 38, 55, 83, 107, 137, 209, 252, 359, 462, 612, 757, 1032, 1266, 1649, 2050, 2617, 3210, 4111, 4980, 6262, 7659, 9479, 11484, 14224, 17132, 20962, 25259, 30693, 36744, 44517, 53043, 63850, 75955, 90943, 107721, 128485
Offset: 0

Views

Author

Gus Wiseman, May 14 2025

Keywords

Comments

An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The a(0) = 0 through a(9) = 12 partitions:
  .  .  .  (21)  .  .  (42)    (421)   (431)    (63)
                       (321)   (3211)  (521)    (432)
                       (2211)          (3221)   (531)
                                       (4211)   (621)
                                       (32111)  (3321)
                                                (4221)
                                                (4311)
                                                (5211)
                                                (32211)
                                                (42111)
                                                (222111)
                                                (321111)
		

Crossrefs

Negating both sides gives A383507, ranks A383532.
These partitions are ranked by A383531.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A239455 counts Look-and-Say partitions, complement A351293.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A381431 is the section-sum transform, union A381432, complement A381433.
A383534 gives 0-prepended differences by rank, see A325351.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&!UnsameQ@@Length/@Split[conj[#]]&]], {n,0,30}]

Formula

These partitions have Heinz numbers A130092 /\ A383513.

A383531 Heinz numbers of integer partitions that do not have distinct multiplicities (Wilf) or distinct nonzero 0-appended differences (conjugate Wilf).

Original entry on oeis.org

6, 21, 30, 36, 42, 60, 65, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 132, 133, 138, 140, 150, 154, 156, 165, 168, 174, 180, 186, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258, 264, 270, 273, 276, 280, 282, 286, 294, 300, 306, 308
Offset: 1

Views

Author

Gus Wiseman, May 15 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   21: {2,4}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   60: {1,1,2,3}
   65: {3,6}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
		

Crossrefs

These partitions are counted by A383530.
Negating both sides gives A383532, counted by A383507.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A122111 represents conjugation in terms of Heinz numbers.
A325324 counts integer partitions with distinct 0-appended differences, ranks A325367.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],!UnsameQ@@Length/@Split[prix[#]] && !UnsameQ@@Length/@Split[conj[prix[#]]]&]

Formula

Equals A130092 /\ A383513.

A384887 Number of integer partitions of n with all equal lengths of maximal gapless runs (decreasing by 0 or 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 10, 14, 18, 21, 26, 35, 39, 46, 58, 68, 79, 97, 111, 131, 155, 177, 206, 246, 278, 318, 373, 423, 483, 563, 632, 722, 827, 931, 1058, 1209, 1354, 1528, 1736, 1951, 2188, 2475, 2762, 3097, 3488, 3886, 4342, 4876, 5414, 6038, 6741, 7482
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2025

Keywords

Examples

			The partition y = (6,5,5,5,3,3,2,1) has maximal gapless runs ((6,5,5,5),(3,3,2,1)), with lengths (4,4), so y is counted under a(30).
The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (321)     (2221)     (332)
                                     (2211)    (3211)     (2222)
                                     (21111)   (22111)    (3221)
                                     (111111)  (211111)   (3311)
                                               (1111111)  (22211)
                                                          (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is A384886, distinct A384178.
For distinct instead of equal lengths we have A384884.
For anti-runs instead of runs we have A384888, distinct A384885.
For subsets instead of strict partitions we have A243815.
Without counting decreases by 0 we get A384904.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]

A383509 Number of Look-and-Say partitions of n that are not section-sum partitions.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 3, 4, 4, 7, 9, 11, 18, 25, 30, 41, 55, 63, 87, 98, 125, 147, 192, 213, 271, 313, 389, 444, 551, 621, 767, 874, 1055, 1209, 1444, 1646, 1965, 2244, 2644, 2991
Offset: 0

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

A partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.
A partition is section-sum iff its conjugate is Look-and-Say, meaning it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The a(4) = 1 through a(11) = 9 partitions:
  211  221   21111  2221    422      22221     442        222221
       2111         22111   22211    222111    4222       322211
                    211111  221111   2211111   222211     332111
                            2111111  21111111  322111     422111
                                               2221111    2222111
                                               22111111   3221111
                                               211111111  22211111
                                                          221111111
                                                          2111111111
Conjugates of the a(4) = 1 through a(11) = 9 partitions:
  (3,1)  (3,2)  (5,1)  (4,3)  (5,3)      (5,4)  (6,4)      (6,5)
         (4,1)         (5,2)  (6,2)      (6,3)  (7,3)      (7,4)
                       (6,1)  (7,1)      (7,2)  (8,2)      (8,3)
                              (3,3,1,1)  (8,1)  (9,1)      (9,2)
                                                (6,3,1)    (10,1)
                                                (3,3,2,2)  (6,3,2)
                                                (4,4,1,1)  (6,4,1)
                                                           (7,3,1)
                                                           (6,3,1,1)
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are ranked by (A383516).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A351592 counts non Wilf Look-and-Say partitions (A384006).
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).
A383519 counts section-sum Wilf partitions (A383520).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions /@ Length/@Split[y]],UnsameQ@@Join@@#&];
    conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], disjointFamilies[#]!={}&&disjointFamilies[conj[#]]=={}&]], {n,0,30}]

A384885 Number of integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 13, 15, 18, 22, 28, 31, 38, 45, 53, 62, 74, 86, 105, 123, 146, 171, 208, 242, 290, 340, 399, 469, 552, 639, 747, 862, 999, 1150, 1326, 1514, 1736, 1979, 2256, 2560, 2909, 3283, 3721, 4191, 4726, 5311, 5973, 6691, 7510, 8396, 9395
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The partition y = (8,6,3,3,3,1) has maximal anti-runs ((8,6,3),(3),(3,1)), with lengths (3,1,2), so y is counted under a(24).
The partition z = (8,6,5,3,3,1) has maximal anti-runs ((8,6),(5,3),(3,1)), with lengths (2,2,2), so z is not counted under a(26).
The a(1) = 1 through a(9) = 9 partitions:
  (1)  (2)  (3)  (4)    (5)      (6)      (7)      (8)      (9)
                 (3,1)  (4,1)    (4,2)    (5,2)    (5,3)    (6,3)
                        (3,1,1)  (5,1)    (6,1)    (6,2)    (7,2)
                                 (4,1,1)  (3,3,1)  (7,1)    (8,1)
                                          (4,2,1)  (4,2,2)  (4,4,1)
                                          (5,1,1)  (4,3,1)  (5,2,2)
                                                   (5,2,1)  (5,3,1)
                                                   (6,1,1)  (6,2,1)
                                                            (7,1,1)
		

Crossrefs

For subsets instead of strict partitions we have A384177, for runs A384175.
The strict case is A384880.
For runs instead of anti-runs we have A384884, strict A384178.
For equal instead of distinct lengths we have A384888, for runs A384887.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}]

A325406 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 1, 3, 2, 0, 0, 1, 4, 2, 3, 1, 0, 0, 1, 1, 5, 5, 2, 1, 0, 0, 1, 3, 5, 6, 3, 3, 1, 0, 0, 1, 3, 4, 8, 7, 1, 4, 2, 0, 0, 1, 3, 6, 11, 7, 5, 2, 4, 2, 1, 0, 1, 1, 6, 13, 8, 9, 9, 0, 4, 3, 1, 0, 1, 6, 7, 11, 12, 9
Offset: 0

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences. The distinct differences of any degree are the union of the k-th differences for all k >= 0. For example, the k-th differences of (1,1,2,4) for k = 0...3 are:
(1,1,2,4)
(0,1,2)
(1,1)
(0)
so there are a total of 4 distinct differences of any degree, namely {0,1,2,4}.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  2  0
  0  1  2  2  0
  0  1  1  3  2  0
  0  1  4  2  3  1  0
  0  1  1  5  5  2  1  0
  0  1  3  5  6  3  3  1  0
  0  1  3  4  8  7  1  4  2  0
  0  1  3  6 11  7  5  2  4  2  1
  0  1  1  6 13  8  9  9  0  4  3  1
  0  1  6  7 11 12  9 10  8  4  3  2  2
  0  1  1  7 18  9 14 19  5 10  3  5  4  1
  0  1  3  9 17  9 22 20 15  9  7  6  5  4  1
  0  1  4  8 22 11 16 24 22 19 10 11  2  8  7  2
  0  1  4 10 23 15 24 23 27 27 12 14 11  8  8  5  5
Row n = 8 counts the following partitions:
  (8)  (44)        (17)       (116)     (134)   (1133)   (111122)
       (2222)      (26)       (125)     (233)   (11123)
       (11111111)  (35)       (1115)    (1223)  (11222)
                   (224)      (1124)
                   (1111112)  (11114)
                              (111113)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,0,Length[#]}]]==k&]],{n,0,16},{k,0,n}]

A383508 Number of integer partitions of n that are both Look-and-Say and section-sum partitions.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 22, 27, 30, 35, 42, 50, 58, 68, 82, 92, 112, 126, 149, 174, 199, 225, 263, 299, 337, 388, 435, 488, 545, 635, 681, 775, 841, 948, 1051, 1181, 1271, 1446, 1553, 1765, 1896, 2141, 2285, 2608, 2799
Offset: 0

Views

Author

Gus Wiseman, May 17 2025

Keywords

Comments

An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.
An integer partition is section-sum iff its conjugate is Look-and-Say, meaning it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (1111)  (11111)  (222)     (331)      (332)
                                     (411)     (511)      (611)
                                     (3111)    (4111)     (2222)
                                     (111111)  (31111)    (5111)
                                               (1111111)  (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
The non Wilf case is A383511 (A383518).
These partitions are ranked by (A383515).
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length (A106529).
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A351592 counts non Wilf Look-and-Say partitions (A384006).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions /@ Length/@Split[y]],UnsameQ@@Join@@#&];
    conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], disjointFamilies[#]!={}&&disjointFamilies[conj[#]]!={}&]], {n,0,30}]

A383510 Number of integer partitions of n that are neither Look-and-Say nor section-sum.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 2, 5, 10, 14, 19, 33, 38, 55, 81, 107, 137, 201, 248, 349, 450, 596, 745, 1000, 1242, 1611, 2007, 2567, 3164, 4025, 4920, 6166, 7545, 9347, 11360, 14004, 16932, 20686, 24949, 30305, 36366, 43939, 52521, 63098, 75221
Offset: 0

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

An integer partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.
An integer partition is section-sum iff its conjugate is Look-and-Say, meaning it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.

Examples

			The a(3) = 1 through a(10) = 14 partitions:
  (21)  .  .  (42)    (421)   (431)    (432)     (532)
              (321)   (3211)  (521)    (531)     (541)
              (2211)          (3221)   (621)     (721)
                              (4211)   (3321)    (4321)
                              (32111)  (4221)    (5221)
                                       (4311)    (5311)
                                       (5211)    (6211)
                                       (32211)   (32221)
                                       (42111)   (33211)
                                       (321111)  (42211)
                                                 (43111)
                                                 (52111)
                                                 (421111)
                                                 (3211111)
		

Crossrefs

Ranking sequences are shown in parentheses below.
These partitions are ranked by (A383517).
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A351592 counts non Wilf Look-and-Say partitions (A384006).
A381431 is the section-sum transform.
A383508 counts partitions that are both Look-and-Say and section-sum (A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383519 counts section-sum Wilf partitions (A383520).
A383530 counts partitions that are neither Wilf nor conjugate Wilf (A383531).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions /@ Length/@Split[y]],UnsameQ@@Join@@#&];
    conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]], {k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], disjointFamilies[#]=={} && disjointFamilies[conj[#]]=={}&]], {n,0,15}]

A383511 Number of integer partitions of n that are Look-and-Say and section-sum but not Wilf.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 3, 3, 0, 0, 5, 2, 1, 5, 6, 1, 10, 5, 12, 11, 12, 14, 31, 15, 25, 28, 38
Offset: 0

Views

Author

Gus Wiseman, May 18 2025

Keywords

Comments

A partition is Look-and-Say iff it is possible to choose a disjoint family of strict partitions, one of each of its multiplicities. These are ranked by A351294.
A partition is section-sum iff its conjugate is Look-and-Say, meaning it is possible to choose a disjoint family of strict partitions, one of each of its positive 0-appended differences. These are ranked by A381432.
A partition is Wilf iff its multiplicities are all different (ranked by A130091).

Examples

			The a(n) partitions for n = 12, 15, 20, 24, 28:
  (6,3,3)  (6,6,3)    (8,8,4)    (12,6,6)         (14,7,7)
           (6,3,3,3)  (10,5,5)   (6,6,6,3,3)      (8,8,8,4)
                      (8,4,4,4)  (8,4,4,4,4)      (8,8,4,4,4)
                                 (6,6,3,3,3,3)    (8,4,4,4,4,4)
                                 (6,3,3,3,3,3,3)  (10,6,6,2,2,2)
                                                  (11,6,6,1,1,1,1,1)
		

Crossrefs

Ranking sequences are shown in parentheses below.
This is the non Wilf case of A383508 (A383515).
These partitions are ranked by (A383518).
A000041 counts integer partitions, strict A000009.
A098859 counts Wilf partitions (A130091), conjugate (A383512).
A239455 counts Look-and-Say partitions (A351294), complement A351293 (A351295).
A239455 counts section-sum partitions (A381432), complement A351293 (A381433).
A336866 counts non Wilf partitions (A130092), conjugate (A383513).
A351592 counts non Wilf Look-and-Say partitions (A384006).
A383509 counts partitions that are Look-and-Say but not section-sum (A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (A383517).
A383519 counts section-sum Wilf partitions (A383520).

Programs

  • Mathematica
    disjointFamilies[y_]:=Select[Tuples[IntegerPartitions /@ Length/@Split[y]],UnsameQ@@Join@@#&];
    conj[y_]:=If[Length[y]==0,y, Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n], disjointFamilies[#]!={}&&disjointFamilies[conj[#]]!={} && !UnsameQ@@Length/@Split[#]&]], {n,0,30}]

A383532 Heinz numbers of integer partitions with distinct multiplicities (Wilf) and distinct nonzero 0-appended differences (conjugate Wilf).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 49, 50, 52, 53, 56, 59, 61, 64, 67, 68, 71, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121, 124, 125
Offset: 1

Views

Author

Gus Wiseman, May 15 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Partitions of this type are counted by A383507.
Negating both sides gives A383531, counted by A383530.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A098859 counts Wilf partitions, ranks A130091, conjugate A383512.
A122111 represents conjugation in terms of Heinz numbers.
A325324 counts integer partitions with distinct 0-appended differences, ranks A325367.
A336866 counts non Wilf partitions, ranks A130092, conjugate A383513.
A383709 counts Wilf partitions with distinct 0-appended differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    paug[y_]:=-DeleteCases[Differences[Append[y,0]],0];
    Select[Range[100], UnsameQ@@Last/@FactorInteger[#] && UnsameQ@@paug[Reverse[prix[#]]]&]

Formula

Equals A130091 /\ A383512.
Previous Showing 21-30 of 42 results. Next