cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 63 results. Next

A351980 Heinz numbers of integer partitions with as many even parts as odd conjugate parts and as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 6, 84, 126, 140, 210, 490, 525, 686, 875, 1404, 1456, 2106, 2184, 2288, 2340, 3432, 3510, 5460, 6760, 7644, 8190, 8580, 8775, 9100, 9464, 11466, 12012, 12740, 12870, 13650, 14300, 14625, 15808, 18018, 18468, 19110, 19152, 20020, 20672, 21450, 22308, 23712
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
     1: ()
     6: (2,1)
    84: (4,2,1,1)
   126: (4,2,2,1)
   140: (4,3,1,1)
   210: (4,3,2,1)
   490: (4,4,3,1)
   525: (4,3,3,2)
   686: (4,4,4,1)
   875: (4,3,3,3)
  1404: (6,2,2,2,1,1)
  1456: (6,4,1,1,1,1)
  2106: (6,2,2,2,2,1)
  2184: (6,4,2,1,1,1)
  2288: (6,5,1,1,1,1)
  2340: (6,3,2,2,1,1)
		

Crossrefs

The first condition alone is A349157, counted by A277579.
The second condition alone is A350943, counted by A277579.
There are two other possible double-pairings of statistics:
- A350946, counted by A351977.
- A350949, counted by A351976.
The case of all four statistics equal is A350947, counted by A351978.
These partitions are counted by A351981.
Partitions with as many even as odd parts:
- counted by A045931
- strict case counted by A239241
- ranked by A325698
- conjugate ranked by A350848
- strict conjugate case counted by A352129
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

Formula

Closed under A122111 (conjugation).
Intersection of A349157 and A350943.
A257992(a(n)) = A344616(a(n)).
A257991(a(n)) = A350847(a(n)).

A351981 Number of integer partitions of n with as many even parts as odd conjugate parts, and as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 2, 2, 4, 2, 1, 6, 8, 7, 9, 13, 14, 15, 19, 21, 23, 32, 40, 41, 45, 66, 81, 80, 96, 124, 139, 160, 194, 221, 246, 303, 360, 390, 446, 546, 634, 703, 810, 971, 1115, 1250, 1448, 1685, 1910
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) partitions for selected n:
n = 3    9      15       18       19       20         21
   -----------------------------------------------------------
    21   4221   622221   633222   633322   644321     643332
         4311   632211   643221   643321   653321     654321
                642111   643311   644221   654221     665211
                651111   644211   644311   654311     82222221
                         653211   653221   82222211   83222211
                         663111   653311   84221111   84222111
                                  654211   86111111   85221111
                                  664111              86211111
                                                      87111111
For example, the partition (6,6,3,1,1,1) has conjugate (6,3,3,2,2,2), and has 2 even, 4 odd, 4 even conjugate, and 2 odd conjugate parts, so is counted under a(18).
		

Crossrefs

The first condition alone is A277579, ranked by A349157.
The second condition alone is A277579, ranked by A350943.
These partitions are ranked by A351980.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931: # of even parts = # of odd parts:
- conjugate also A045931
- ordered A098123
- strict A239241
- ranked by A325698
- conjugate ranked by A350848
- A277103: # of odd parts = # of odd conjugate parts, ranked by A350944.
- A350948: # of even parts = # of even conjugate parts, ranked by A350945.
There are two other double-pairings of statistics:
- A351976, ranked by A350949.
- A351977, ranked by A350946.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

A366531 Sum of even prime indices of n.

Original entry on oeis.org

0, 0, 2, 0, 0, 2, 4, 0, 4, 0, 0, 2, 6, 4, 2, 0, 0, 4, 8, 0, 6, 0, 0, 2, 0, 6, 6, 4, 10, 2, 0, 0, 2, 0, 4, 4, 12, 8, 8, 0, 0, 6, 14, 0, 4, 0, 0, 2, 8, 0, 2, 6, 16, 6, 0, 4, 10, 10, 0, 2, 18, 0, 8, 0, 6, 2, 0, 0, 2, 4, 20, 4, 0, 12, 2, 8, 4, 8, 22, 0, 8, 0, 0, 6
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = 2+2 = 4.
		

Crossrefs

Zeros are A066208, counted by A000009.
The triangle for the odd version is A113685, without zeros A365067.
The triangle for this statistic is A113686, without zeros A174713.
The odd version is A366528.
The halved version is A366533.
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A239261 counts partitions with sum of odd parts = sum of even parts.
A257991 counts odd prime indices, even A257992.
A346697 adds up odd-indexed prime indices, even-indexed A346698.
A366322 lists numbers with not all prime indices even, counted by A086543.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n], {p_?(EvenQ@*PrimePi),k_}:>PrimePi[p]*k]],{n,100}]

Formula

a(n) = A056239(n) - A366528(n).

A366533 Sum of even prime indices of n divided by 2.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 2, 0, 0, 1, 3, 2, 1, 0, 0, 2, 4, 0, 3, 0, 0, 1, 0, 3, 3, 2, 5, 1, 0, 0, 1, 0, 2, 2, 6, 4, 4, 0, 0, 3, 7, 0, 2, 0, 0, 1, 4, 0, 1, 3, 8, 3, 0, 2, 5, 5, 0, 1, 9, 0, 4, 0, 3, 1, 0, 0, 1, 2, 10, 2, 0, 6, 1, 4, 2, 4, 11, 0, 4, 0, 0, 3, 0, 7
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = (2+2)/2 = 2.
		

Crossrefs

Zeros are A066208, counted by A000009.
The triangle for this statistic (without zeros) is A174713.
The un-halved odd version is A366528.
The un-halved version is A366531.
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A113685 counts partitions by sum of odd parts, even version A113686.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A257991 counts odd prime indices, even A257992.
A346697 adds up odd-indexed prime indices, even-indexed A346698.
A365067 counts partitions by sum of odd parts (without zeros).
A366322 lists numbers with not all prime indices even, counted by A086543.

Programs

  • Maple
    f:= proc(n) local F,t;
      F:= map(t -> [numtheory:-Pi(t[1]),t[2]], ifactors(n)[2]);
      add(`if`(t[1]::even, t[1]*t[2]/2, 0), t=F)
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[Select[prix[n],EvenQ]]/2,{n,100}]

Formula

a(n) = A366531(n)/2.

A349158 Heinz numbers of integer partitions with exactly one odd part.

Original entry on oeis.org

2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with exactly one odd prime index. These are also partitions whose conjugate partition has alternating sum equal to 1.
Numbers that are product of a term of A031368 and a term of A066207. - Antti Karttunen, Nov 13 2021

Examples

			The terms and corresponding partitions begin:
      2: (1)         42: (4,2,1)       86: (14,1)
      5: (3)         45: (3,2,2)       93: (11,2)
      6: (2,1)       47: (15)          95: (8,3)
     11: (5)         51: (7,2)         97: (25)
     14: (4,1)       54: (2,2,2,1)     98: (4,4,1)
     15: (3,2)       58: (10,1)        99: (5,2,2)
     17: (7)         59: (17)         103: (27)
     18: (2,2,1)     65: (6,3)        105: (4,3,2)
     23: (9)         67: (19)         106: (16,1)
     26: (6,1)       69: (9,2)        109: (29)
     31: (11)        73: (21)         114: (8,2,1)
     33: (5,2)       74: (12,1)       119: (7,4)
     35: (4,3)       77: (5,4)        122: (18,1)
     38: (8,1)       78: (6,2,1)      123: (13,2)
     41: (13)        83: (23)         126: (4,2,2,1)
		

Crossrefs

These partitions are counted by A000070 up to 0's.
Allowing no odd parts gives A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These are the positions of 1's in A257991.
The even prime indices are counted by A257992.
The conjugate partitions are ranked by A345958.
Allowing at most one odd part gives A349150, counted by A100824.
A047993 ranks balanced partitions, counted by A106529.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340604 ranks partitions of odd positive rank, counted by A101707.
A340932 ranks partitions whose least part is odd, counted by A026804.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?OddQ]==1&]

A352488 Weak nonexcedance set of A122111. Numbers k >= A122111(k), where A122111 represents partition conjugation using Heinz numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 100, 108, 112, 120, 125, 128, 135, 140, 144, 150, 160, 162, 168, 176, 180, 192, 196, 200, 210, 216, 224, 225, 240, 243, 250, 252, 256, 264, 270, 280
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence lists all Heinz numbers of partitions whose Heinz number is greater than or equal to that of their conjugate.

Examples

			The terms together with their prime indices begin:
    1: ()
    2: (1)
    4: (1,1)
    6: (2,1)
    8: (1,1,1)
    9: (2,2)
   12: (2,1,1)
   16: (1,1,1,1)
   18: (2,2,1)
   20: (3,1,1)
   24: (2,1,1,1)
   27: (2,2,2)
   30: (3,2,1)
   32: (1,1,1,1,1)
   36: (2,2,1,1)
   40: (3,1,1,1)
   48: (2,1,1,1,1)
   50: (3,3,1)
   54: (2,2,2,1)
   56: (4,1,1,1)
		

Crossrefs

These partitions are counted by A046682.
The opposite version is A352489, strong A352487.
The strong version is A352490, counted by A000701.
These are the positions of nonnegative terms in A352491.
A000041 counts integer partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902 (cf. A258116).
A003963 = product of prime indices, conjugate A329382.
A008292 is the triangle of Eulerian numbers (version without zeros).
A008480 counts permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798 and A296150.
A122111 = partition conjugation using Heinz numbers, parts A321649/A321650.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A173018 counts permutations by excedances, weak A123125.
A330644 counts non-self-conjugate partitions, ranked by A352486.
A352525 counts compositions by weak superdiagonals, rank statistic A352517.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#>=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) >= A122111(a(n)).

A352129 Number of strict integer partitions of n with as many even conjugate parts as odd conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 3, 5, 5, 6, 6, 9, 8, 10, 12, 13, 15, 17, 20, 20, 26, 26, 32, 35, 39, 44, 50, 55, 61, 71, 76, 87, 96, 108, 117, 135, 145, 164, 181, 200, 222, 246, 272, 298, 334, 363, 404, 443
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 3      13         15         18         20           22
   ------------------------------------------------------------------
    (2,1)  (6,5,2)    (10,5)     (12,6)     (12,7,1)     (12,8,2)
           (6,4,2,1)  (6,4,3,2)  (8,7,3)    (8,5,4,3)    (8,6,5,3)
                      (6,5,3,1)  (8,5,3,2)  (8,6,4,2)    (8,7,5,2)
                                 (8,6,3,1)  (8,7,4,1)    (12,7,2,1)
                                            (8,6,3,2,1)  (8,6,4,3,1)
                                                         (8,7,4,2,1)
		

Crossrefs

This is the strict case of A045931, ranked by A350848 (zeros of A350941).
The conjugate version is A239241, non-strict A045931 (ranked by A325698).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A277579, ranked by A349157, strict A352131.
- A277103, ranked by A350944.
- A277579, ranked by A350943, strict A352130.
- A350948, ranked by A350945.
There are three double-pairings of statistics:
- A351976, ranked by A350949.
- A351977, ranked by A350946, strict A352128.
- A351981, ranked by A351980.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A019507 Droll numbers: numbers > 1 whose sum of even prime factors equals the sum of odd prime factors.

Original entry on oeis.org

72, 240, 672, 800, 2240, 4224, 5184, 6272, 9984, 14080, 17280, 33280, 39424, 48384, 52224, 57600, 93184, 116736, 161280, 174080, 192000, 247808, 304128, 373248, 389120, 451584, 487424, 537600, 565248, 585728, 640000, 718848, 1013760, 1089536, 1244160, 1384448
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

Examples

			6272 = 2*2*2*2*2*2*2*7*7 is droll since 2+2+2+2+2+2+2 = 14 = 7+7.
		

Crossrefs

For count instead of sum we have A072978.
Partitions of this type are counted by A239261, without zero terms A249914.
For prime indices instead of factors we have A366748, zeros of A366749.
The LHS is A366839 with alternating zeros, for indices A366531, triangle A113686.
The RHS is A366840, for indices A366528, triangle A113685.
A000009 counts partitions into odd parts, ranks A066208.
A035363 counts partitions into even parts, ranks A066207.
A112798 lists prime indices, length A001222, sum A056239.
A257991 counts odd prime indices, even A257992.
A300061 lists numbers with even sum of prime indices, odd A300063.

Programs

  • Maple
    f:= proc(k, m) # numbers whose sum of prime factors >= m is k; m is prime
       local S,p,j;
       option remember;
       if k = 0 then return [1]
       elif m > k then return []
       fi;
       S:= NULL:
       p:= nextprime(m);
       for j from k by -m to 0 do
         S:= S, op(map(`*`,  procname(j,p) , m^((k-j)/m)))
       od;
       [S]
    end proc:
    g:= proc(N) local m,R;
      R:= NULL;
      for m from 1 while 2^m < N do
       R:= R, op(map(`*`,select(`<=`,f(2*m,3), N/2^m),2^m));
      od;
      sort([R])
    end proc:
    g(10^8); # Robert Israel, Feb 20 2025
  • Mathematica
    Select[Range[2, 2*10^6, 2], First[#] == Total[Rest[#]] & [Times @@@ FactorInteger[#]] &] (* Paolo Xausa, Feb 19 2025 *)
  • PARI
    isok(n) = {if (n % 2, return (0)); f = factor(n); return (2*f[1,2] == sum(i=2, #f~, f[i,1]*f[i,2]));} \\ Michel Marcus, Jun 21 2013

Formula

These are even numbers k such that A366839(k/2) = A366840(k). - Gus Wiseman, Oct 25 2023 (corrected Feb 19 2025)

Extensions

Name edited by Paolo Xausa, Feb 19 2025

A352130 Number of strict integer partitions of n with as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 65, 72, 79, 86, 93, 102, 111, 121, 132, 143, 155, 169, 183, 197, 213, 231, 251, 271, 292, 315, 340, 367, 396
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 2    7        9        13        14         15         16
   --------------------------------------------------------------------
    (2)  (6,1)    (8,1)    (12,1)    (14)       (14,1)     (16)
         (4,2,1)  (4,3,2)  (6,4,3)   (6,5,3)    (6,5,4)    (8,5,3)
                  (6,2,1)  (8,3,2)   (10,3,1)   (8,4,3)    (12,3,1)
                           (10,2,1)  (6,4,3,1)  (10,3,2)   (6,5,4,1)
                                     (8,3,2,1)  (12,2,1)   (8,4,3,1)
                                                (6,5,3,1)  (10,3,2,1)
                                                           (6,4,3,2,1)
		

Crossrefs

This is the strict case of A277579, ranked by A350943 (zeros of A350942).
The conjugate version is A352131, non-strict A277579 (ranked by A349157).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931, ranked by A325698, strict A239241.
- A045931, ranked by A350848, strict A352129.
- A277103, ranked by A350944, strict new.
- A350948, ranked by A350945, strict new.
There are three double-pairings of statistics:
- A351976, ranked by A350949, strict A010054?
- A351977, ranked by A350946, strict A352128.
- A351981, ranked by A351980. strict A014105?
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A352142 Numbers whose prime factorization has all odd indices and all odd exponents.

Original entry on oeis.org

1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.

Examples

			The terms together with their prime indices begin:
   1 = 1
   2 = prime(1)
   5 = prime(3)
   8 = prime(1)^3
  10 = prime(1) prime(3)
  11 = prime(5)
  17 = prime(7)
  22 = prime(1) prime(5)
  23 = prime(9)
  31 = prime(11)
  32 = prime(1)^5
  34 = prime(1) prime(7)
  40 = prime(1)^3 prime(3)
		

Crossrefs

The restriction to primes is A031368.
The first condition alone is A066208, counted by A000009.
These partitions are counted by A117958.
The squarefree case is A258116, even A258117.
The second condition alone is A268335, counted by A055922.
The even-even version is A352141 counted by A035444.
A000290 = exponents all even, counted by A035363.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.

Programs

  • Mathematica
    Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A352142_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
    A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A066208 and A268335.
A257991(a(n)) = A001222(a(n)).
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A162641(a(n)) = 0.
Previous Showing 31-40 of 63 results. Next