cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A325795 Numbers with more divisors than the sum of their prime indices.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 80, 84, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 210, 216, 220, 224, 234, 240, 252, 256, 260, 264, 270, 280, 288
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

First differs from A325781 in having 156.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

Positions of positive terms in A325794.
Heinz numbers of the partitions counted by A325831.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]>Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325832 Number of integer partitions of n whose number of submultisets is greater than or equal to n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 8, 13, 16, 22, 35, 50, 58, 85, 120, 162, 199, 267, 347, 462, 592, 773, 1006, 1293, 1504, 1929, 2455, 3081, 3859, 4815, 5953, 7363, 8737, 10743, 13193, 16102, 19241, 23413, 28344, 34260, 40911, 49197, 58917, 70515, 84055, 100070, 118914
Offset: 0

Views

Author

Gus Wiseman, May 25 2019

Keywords

Comments

The number of submultisets of a partition is the product of its multiplicities, each plus one.
The Heinz numbers of these partitions are given by A325796.

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (21)   (31)    (221)    (321)     (421)      (431)
       (11)  (111)  (211)   (311)    (411)     (2221)     (521)
                    (1111)  (2111)   (2211)    (3211)     (3221)
                            (11111)  (3111)    (4111)     (3311)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(n=0 or i=1,
          `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0,
          (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i))
        end:
    a:= n-> combinat[numbpart](n)-add(b(n$2, k), k=0..n-1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Aug 17 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])>=n&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, Function [w, b[w, Min[w, i - 1], p/(j + 1)]][n - i*j], 0], {j, 0, n/i}]];
    a[n_] := PartitionsP[n] - Sum[b[n, n, k], {k, 0, n - 1}];
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, May 16 2021, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A325833(n).
For n even, a(n) = A325831(n) + A325830(n/2); for n odd, a(n) = A325831(n).

A325796 Numbers with at least as many divisors as the sum of their prime indices.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 70, 72, 80, 84, 88, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 204, 208, 210, 216, 220, 224, 228, 234, 240
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   30: {1,2,3}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
		

Crossrefs

Positions of nonnegative terms in A325794.
Heinz numbers of the partitions counted by A325832.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]>=Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A325797 Numbers with fewer divisors than the sum of their prime indices.

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The sequence of terms together with their prime indices begins:
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  34: {1,7}
  35: {3,4}
		

Crossrefs

Positions of negative terms in A325794.
Heinz numbers of the partitions counted by A325833.

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]PrimePi[p]*k]]&]

A325801 Number of divisors of n minus the number of distinct positive subset-sums of the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A positive subset-sum of an integer partition is any sum of a nonempty submultiset of it.

Crossrefs

Positions of 0's are A299702.
Positions of 1's are A325802.
Positions of positive integers are A299729.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p] k]];
    Table[DivisorSigma[0,n]-Length[Union[hwt/@Divisors[n]]],{n,100}]
  • PARI
    A325801(n) = (numdiv(n) - A299701(n));
    A299701(n) = { my(f = factor(n), pids = List([])); for(i=1,#f~, while(f[i,2], f[i,2]--; listput(pids,primepi(f[i,1])))); pids = Vec(pids); my(sv=vector(vecsum(pids))); for(b=1,(2^length(pids))-1,sv[sumbybits(pids,b)] = 1); 1+vecsum(sv); }; \\ Not really an optimal way to count these.
    sumbybits(v,b) = { my(s=0,i=1); while(b>0,s += (b%2)*v[i]; i++; b >>= 1); (s); }; \\ Antti Karttunen, May 26 2019

Formula

a(n) = A000005(n) - A299701(n).

A307699 Numbers k such that there is no integer partition of k with exactly k-1 submultisets.

Original entry on oeis.org

0, 1, 2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 38, 42, 44, 48, 50, 54, 60, 62, 66, 68, 72, 74, 80, 84, 86, 90, 92, 98, 102, 104, 108, 110, 114, 122, 126, 128, 132, 134, 138, 140, 146, 150, 152, 158, 164, 168, 170, 174, 180, 182, 186, 192, 194, 198, 200, 206
Offset: 1

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

After a(1) = 0, first differs from A229488 in lacking 56.
The number of submultisets of a partition is the product of its multiplicities, each plus one.
{a(n)-1} contains all odd numbers m = p*q*... such that gcd(p-1, q-1, ...) > 2. In particular, {a(n)-1} contains all powers of all primes > 3. Proof: If g is the greatest common divisor, then all factors of k are congruent to 1 modulo g, and thus all multiplicities of any valid multiset are divisible by g. However, the required sum is congruent to 2 modulo g, and so no such multiset can exist. - Charlie Neder, Jun 06 2019

Examples

			The sequence of positive terms together with their prime indices begins:
   1: {}
   2: {1}
   6: {1,2}
   8: {1,1,1}
  12: {1,1,2}
  14: {1,4}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  26: {1,6}
  30: {1,2,3}
  32: {1,1,1,1,1}
  38: {1,8}
  42: {1,2,4}
  44: {1,1,5}
  48: {1,1,1,1,2}
  50: {1,3,3}
  54: {1,2,2,2}
  60: {1,1,2,3}
Partitions realizing the desired number of submultisets for each non-term are:
   3: (3)
   4: (22)
   5: (41)
   7: (511)
   9: (621)
  10: (4411)
  11: (71111)
  13: (9211)
  15: (9111111)
  16: (661111)
  17: (9521)
  19: (94411)
  21: (981111)
  22: (88111111)
  23: (32222222222)
  25: (99421)
  27: (3222222222222)
  28: (994411)
  29: (98222222)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[50],Function[n,Select[IntegerPartitions[n], Times@@(1+Length/@Split[#])==n-1&]=={}]]

Extensions

More terms from Alois P. Heinz, May 30 2019

A325800 Numbers whose sum of prime indices is equal to the number of distinct subset-sums of their prime indices.

Original entry on oeis.org

3, 10, 28, 66, 88, 156, 208, 306, 340, 408, 544, 570, 684, 760, 912, 966, 1216, 1242, 1288, 1380, 1656, 1840, 2208, 2436, 2610, 2900, 2944, 3132, 3248, 3480, 3906, 4092, 4176, 4340, 4640, 4650, 5022, 5208, 5456, 5568, 5580, 6200, 6696, 6944, 7326, 7424, 7440
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

First differs from A325793 in lacking 70.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A subset-sum of an integer partition is any sum of a submultiset of it.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose sum is equal to their number of distinct subset-sums. The enumeration of these partitions by sum is given by A126796 interlaced with zeros.

Examples

			340 has prime indices {1,1,3,7} which sum to 12 and have 12 distinct subset-sums: {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12}, so 340 is in the sequence.
The sequence of terms together with their prime indices begins:
     3: {2}
    10: {1,3}
    28: {1,1,4}
    66: {1,2,5}
    88: {1,1,1,5}
   156: {1,1,2,6}
   208: {1,1,1,1,6}
   306: {1,2,2,7}
   340: {1,1,3,7}
   408: {1,1,1,2,7}
   544: {1,1,1,1,1,7}
   570: {1,2,3,8}
   684: {1,1,2,2,8}
   760: {1,1,1,3,8}
   912: {1,1,1,1,2,8}
   966: {1,2,4,9}
  1216: {1,1,1,1,1,1,8}
  1242: {1,2,2,2,9}
  1288: {1,1,1,4,9}
  1380: {1,1,2,3,9}
		

Crossrefs

Positions of 1's in A325799.
Includes A239885 except for 1.

Programs

  • Maple
    filter:= proc(n) local F,t,S,i,r;
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]);
      S:= {0}:
      for t in F do
       S:= map(s -> seq(s + i*t[1],i=0..t[2]),S);
      od;
      nops(S) = add(t[1]*t[2],t=F)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Oct 30 2024
  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Select[Range[1000],hwt[#]==Length[Union[hwt/@Divisors[#]]]&]

Formula

A056239(a(n)) = A299701(a(n)) = A304793(a(n)) + 1.

A325987 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k submultisets, k > 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 1, 3, 0, 1, 1, 2, 1, 1, 0, 1, 0, 3, 0, 3, 0, 4, 0, 1, 0, 3, 0, 1, 1, 3, 1, 3, 0, 3, 2, 1, 0, 4, 0, 1, 1, 1, 0, 1, 0, 5, 0, 3, 0, 5, 0, 3, 0, 6, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 4, 0
Offset: 0

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

The number of submultisets of a partition is the product of its multiplicities, each plus one.

Examples

			Triangle begins:
  1
  0 1
  0 1 1
  0 1 0 2
  0 1 1 1 1 1
  0 1 0 2 0 3 0 1
  0 1 1 3 0 1 1 2 1 1
  0 1 0 3 0 3 0 4 0 1 0 3
  0 1 1 3 1 3 0 3 2 1 0 4 0 1 1 1
  0 1 0 5 0 3 0 5 0 3 0 6 0 1 0 3 0 2 0 1
  0 1 1 4 0 5 0 7 2 1 1 4 0 1 2 5 0 3 0 2 1 0 0 2
Row n = 7 counts the following partitions (empty columns not shown):
  (7)  (43)  (322)  (421)      (31111)  (3211)
       (52)  (331)  (2221)              (22111)
       (61)  (511)  (4111)              (211111)
                    (1111111)
		

Crossrefs

Row lengths are A088881.
Row sums are A000041.
Diagonal n = k is A325830 interspersed with zeros.
Diagonal n + 1 = k is A325828.
Diagonal n - 1 = k is A325836.
Column k = 3 appears to be A137719.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==k&]],{n,0,10},{k,1,Max@@(Times@@(1+Length/@Split[#])&)/@IntegerPartitions[n]}]

Formula

Sum_{k=1..A088881(n)} k * T(n,k) = A000712(n). - Alois P. Heinz, Aug 17 2019
Previous Showing 11-18 of 18 results.