cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A325991 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different sum.

Original entry on oeis.org

210, 420, 462, 630, 840, 858, 910, 924, 1050, 1155, 1260, 1326, 1386, 1470, 1680, 1716, 1820, 1848, 1870, 1890, 1938, 2100, 2145, 2310, 2470, 2520, 2574, 2622, 2652, 2730, 2772, 2926, 2940, 3150, 3234, 3315, 3360, 3432, 3465, 3570, 3640, 3696, 3740, 3780, 3876
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   210: {1,2,3,4}
   420: {1,1,2,3,4}
   462: {1,2,4,5}
   630: {1,2,2,3,4}
   840: {1,1,1,2,3,4}
   858: {1,2,5,6}
   910: {1,3,4,6}
   924: {1,1,2,4,5}
  1050: {1,2,3,3,4}
  1155: {2,3,4,5}
  1260: {1,1,2,2,3,4}
  1326: {1,2,6,7}
  1386: {1,2,2,4,5}
  1470: {1,2,3,4,4}
  1680: {1,1,1,1,2,3,4}
  1716: {1,1,2,5,6}
  1820: {1,1,3,4,6}
  1848: {1,1,1,2,4,5}
  1870: {1,3,5,7}
  1890: {1,2,2,2,3,4}
		

Crossrefs

The subset case is A196723.
The maximal case is A325878.
The integer partition case is A325857.
The strict integer partition case is A325877.
Heinz numbers of the counterexamples are given by A325991.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Plus@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A326018 Heinz numbers of knapsack partitions such that no addition of one part up to the maximum is knapsack.

Original entry on oeis.org

1925, 12155, 20995, 23375, 37145
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
An integer partition is knapsack if every submultiset has a different sum.
The enumeration of these partitions by sum is given by A326016.

Examples

			The sequence of terms together with their prime indices begins:
   1925: {3,3,4,5}
  12155: {3,5,6,7}
  20995: {3,6,7,8}
  23375: {3,3,3,5,7}
  37145: {3,7,8,9}
		

Crossrefs

Programs

  • Mathematica
    ksQ[y_]:=UnsameQ@@Total/@Union[Subsets[y]];
    Select[Range[2,200],With[{phm=If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]},ksQ[phm]&&Select[Table[Sort[Append[phm,i]],{i,Max@@phm}],ksQ]=={}]&]

A325866 Number of subsets of {1..n} containing n such that every subset has a different sum.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 20, 35, 44, 76, 96, 139, 179, 257, 312, 483, 561, 793, 970, 1459, 1535, 2307, 2619, 3503, 4130, 5478, 5973, 8165, 9081, 11666, 13176, 17738, 18440, 24778, 26873, 35187, 38070, 49978, 51776, 72457, 74207, 92512, 102210, 135571, 136786, 179604
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2019

Keywords

Comments

These are strict knapsack partitions (A275972) organized by maximum rather than sum.

Examples

			The a(1) = 1 through a(6) = 14 subsets:
  {1}  {2}    {3}    {4}      {5}      {6}
       {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
              {2,3}  {2,4}    {2,5}    {2,6}
                     {3,4}    {3,5}    {3,6}
                     {1,2,4}  {4,5}    {4,6}
                     {2,3,4}  {1,2,5}  {5,6}
                              {1,3,5}  {1,2,6}
                              {2,4,5}  {1,3,6}
                              {3,4,5}  {1,4,6}
                                       {2,3,6}
                                       {2,5,6}
                                       {3,4,6}
                                       {3,5,6}
                                       {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Plus@@@Subsets[#]&]],{n,10}]

Extensions

a(18)-a(46) from Alois P. Heinz, Jun 03 2019

A364465 Number of subsets of {1..n} with all different first differences of elements.

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 36, 61, 99, 156, 240, 381, 587, 894, 1334, 1967, 2951, 4370, 6406, 9293, 13357, 18976, 27346, 39013, 55437, 78154, 109632, 152415, 210801, 293502, 406664, 561693, 772463, 1058108, 1441796, 1956293, 2639215, 3579542, 4835842, 6523207
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2023

Keywords

Examples

			The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {1,3,4}
		

Crossrefs

For all differences of pairs of elements we have A196723
For partitions instead of subsets we have A325325, strict A320347.
For subset-sums we have A325864, for partitions A108917, A275972.
A007318 counts subsets by length.
A053632 counts subsets by sum.
A363260 counts partitions disjoint from differences, complement A364467.
A364463 counts subsets disjoint from differences, complement A364466.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Differences[#]&]],{n,0,10}]

Extensions

More terms from Rémy Sigrist, Aug 06 2023

A382398 Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different sum.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 8, 22, 2, 14, 40, 102, 214, 4, 24, 92, 236, 564, 1148, 4, 18, 90, 270, 694, 1558, 2, 6, 24, 76, 252, 632, 1554, 3282, 6820, 12942, 6, 24, 84, 246, 664, 1562, 3442, 7084, 14336, 27202, 50520, 2, 26, 88, 294, 704, 1716, 3708, 8028, 16108, 31466, 58320, 107136, 4, 20, 54
Offset: 0

Views

Author

Andrew Howroyd, Mar 23 2025

Keywords

Examples

			The a(1) = 1 through a(6) = 8 subsets:
  {1}  {1,2}  {1,2,3}  {1,2,3}  {1,2,3,5}  {1,2,3,5}
                       {1,2,4}  {1,3,4,5}  {1,2,3,6}
                       {1,3,4}             {1,2,4,6}
                       {2,3,4}             {1,3,4,5}
                                           {1,3,5,6}
                                           {1,4,5,6}
                                           {2,3,4,6}
                                           {2,4,5,6}
Compare the above examples with A325878.
		

Crossrefs

Cf. A039836 (maximum size), A196723, A325878, A382395.

Programs

  • PARI
    a(n)={
       local(best,count);
       my(recurse(k,r,b,w)=
          if(k > n, if(r>=best, if(r>n,best=r;count=0); count++),
             self()(k+1, r, b, w);
             if(!bitand(w,b<
    				
Previous Showing 11-15 of 15 results.