A326252 Number of digraphs with vertices {1..n} whose increasing edges are crossing.
0, 0, 0, 0, 16384, 22020096, 62679678976, 556181084962816
Offset: 0
Crossrefs
Formula
a(n) = 2^(n * (n + 1)/2) * A326210(n).
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The a(4) = 28 edge-sets: {13,24} {12,13,24} {12,13,14,23} {12,13,14,23,24} {12,13,14,23,24,34} {14,23} {12,14,23} {12,13,14,24} {12,13,14,23,34} {13,14,23} {12,13,23,24} {12,13,14,24,34} {13,14,24} {12,13,24,34} {12,13,23,24,34} {13,23,24} {12,14,23,24} {12,14,23,24,34} {13,24,34} {12,14,23,34} {13,14,23,24,34} {14,23,24} {13,14,23,24} {14,23,34} {13,14,23,34} {13,14,24,34} {13,23,24,34} {14,23,24,34}
The a(12) = 1 through a(17) = 14 partitions: (6,6) (10,3) (6,6,2) (6,6,3) (10,6) (14,3) (6,6,1) (10,3,1) (10,3,2) (6,6,4) (6,6,5) (6,6,1,1) (6,6,2,1) (10,3,3) (10,4,3) (10,3,1,1) (6,6,2,2) (10,6,1) (6,6,1,1,1) (6,6,3,1) (6,6,3,2) (10,3,2,1) (6,6,4,1) (6,6,2,1,1) (10,3,2,2) (10,3,1,1,1) (10,3,3,1) (6,6,1,1,1,1) (6,6,2,2,1) (6,6,3,1,1) (10,3,2,1,1) (6,6,2,1,1,1) (10,3,1,1,1,1) (6,6,1,1,1,1,1)
Table[Length[Select[IntegerPartitions[n],!OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}]
The a(180) = 10 unsortable factorizations: (2*3*3*10) (5*6*6) (3*60) (2*3*30) (6*30) (2*9*10) (9*20) (3*3*20) (10*18) (3*6*10) Missing from this list are: (2*2*3*3*5) (2*2*5*9) (4*5*9) (2*90) (180) (2*3*5*6) (2*2*45) (4*45) (3*3*4*5) (2*5*18) (5*36) (2*2*3*15) (2*6*15) (12*15) (3*4*15) (3*5*12)
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Select[facs[n],!OrderedQ[Join@@Sort[primeMS/@#,lexsort]]&]],{n,100}]
Table[Length[Select[IntegerPartitions[n],OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}]
The a(2) = 65 sequences: () (11) (11,12) (11,12,21) (11,12,21,22) (12) (11,21) (11,12,22) (11,12,22,21) (21) (11,22) (11,21,12) (11,21,12,22) (22) (12,11) (11,21,22) (11,21,22,12) (12,21) (11,22,12) (11,22,12,21) (12,22) (11,22,21) (11,22,21,12) (21,11) (12,11,21) (12,11,21,22) (21,12) (12,11,22) (12,11,22,21) (21,22) (12,21,11) (12,21,11,22) (22,11) (12,21,22) (12,21,22,11) (22,12) (12,22,11) (12,22,11,21) (22,21) (12,22,21) (12,22,21,11) (21,11,12) (21,11,12,22) (21,11,22) (21,11,22,12) (21,12,11) (21,12,11,22) (21,12,22) (21,12,22,11) (21,22,11) (21,22,11,12) (21,22,12) (21,22,12,11) (22,11,12) (22,11,12,21) (22,11,21) (22,11,21,12) (22,12,11) (22,12,11,21) (22,12,21) (22,12,21,11) (22,21,11) (22,21,11,12) (22,21,12) (22,21,12,11)
Table[Sum[k!*Binomial[n^2,k],{k,0,n^2}],{n,0,4}]
Comments