cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A326565 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having the same sum.

Original entry on oeis.org

1, 0, 1, 1, 4, 13, 91, 1318, 73581, 51913025
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(2) = 1 through a(5) = 13 antichains:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}      {{1,2,3,4,5}}
                      {{1,4},{2,3}}    {{1,2,5},{1,3,4}}
                      {{2,4},{1,2,3}}  {{1,3,5},{2,3,4}}
                      {{3,4},{1,2,4}}  {{1,4,5},{2,3,5}}
                                       {{1,4,5},{1,2,3,4}}
                                       {{2,3,5},{1,2,3,4}}
                                       {{2,4,5},{1,2,3,5}}
                                       {{3,4,5},{1,2,4,5}}
                                       {{1,5},{2,4},{1,2,3}}
                                       {{2,5},{3,4},{1,2,4}}
                                       {{3,5},{1,2,5},{1,3,4}}
                                       {{4,5},{1,3,5},{2,3,4}}
                                       {{1,4,5},{2,3,5},{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A326566 Number of covering antichains of subsets of {1..n} with equal edge-sums.

Original entry on oeis.org

2, 1, 1, 2, 4, 14, 92, 1320, 73584, 51913039
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(1) = 1 through a(5) = 14 antichains:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}      {{1,2,3,4,5}}
                  {{3},{1,2}}  {{1,4},{2,3}}    {{1,2,5},{1,3,4}}
                               {{2,4},{1,2,3}}  {{1,3,5},{2,3,4}}
                               {{3,4},{1,2,4}}  {{1,4,5},{2,3,5}}
                                                {{5},{1,4},{2,3}}
                                                {{1,4,5},{1,2,3,4}}
                                                {{2,3,5},{1,2,3,4}}
                                                {{2,4,5},{1,2,3,5}}
                                                {{3,4,5},{1,2,4,5}}
                                                {{1,5},{2,4},{1,2,3}}
                                                {{2,5},{3,4},{1,2,4}}
                                                {{3,5},{1,2,5},{1,3,4}}
                                                {{4,5},{1,3,5},{2,3,4}}
                                                {{1,4,5},{2,3,5},{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A326574 Number of antichains of subsets of {1..n} with equal edge-sums.

Original entry on oeis.org

2, 3, 5, 10, 22, 61, 247, 2096, 81896, 52260575
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(4) = 22 antichains:
  {}    {}     {}       {}           {}
  {{}}  {{}}   {{}}     {{}}         {{}}
        {{1}}  {{1}}    {{1}}        {{1}}
               {{2}}    {{2}}        {{2}}
               {{1,2}}  {{3}}        {{3}}
                        {{1,2}}      {{4}}
                        {{1,3}}      {{1,2}}
                        {{2,3}}      {{1,3}}
                        {{1,2,3}}    {{1,4}}
                        {{3},{1,2}}  {{2,3}}
                                     {{2,4}}
                                     {{3,4}}
                                     {{1,2,3}}
                                     {{1,2,4}}
                                     {{1,3,4}}
                                     {{2,3,4}}
                                     {{1,2,3,4}}
                                     {{3},{1,2}}
                                     {{4},{1,3}}
                                     {{1,4},{2,3}}
                                     {{2,4},{1,2,3}}
                                     {{3,4},{1,2,4}}
		

Crossrefs

Set partitions with equal block-sums are A035470.
Antichains with different edge-sums are A326030.
MM-numbers of multiset partitions with equal part-sums are A326534.
The covering case is A326566.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&];
    Table[Length[cleqset[Range[n]]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 13 2019

A371733 Maximal length of a factorization of n into factors > 1 all having the same sum of prime indices.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Sum of prime indices is given by A056239.
Factorizations into factors all having the same sum of prime indices are counted by A321455.

Examples

			The factorizations of 588 of this type are (7*7*12), (21*28), (588), so a(588) = 3.
The factorizations of 900 of this type are (5*5*6*6), (9*10*10), (25*36), (30*30), (900), so a(900) = 4.
		

Crossrefs

Positions of 1's are A321453, counted by A321451.
Positions of terms > 1 are A321454, counted by A321452.
Factorizations of this type are counted by A321455, different sums A321469.
For different sums instead of same sums we have A371734.
For set partitions of binary indices we have A371735.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A321142 and A371794 count non-biquanimous strict partitions.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Table[Max[Length/@Select[facs[n],SameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_same_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == 1));
    A371733(n, m=n, facs=List([])) = if(1==n, if(all_have_same_sum_of_pis(facs),#facs,0), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s = max(s, A371733(n/d, d, newfacs)))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A382202 Number of normal multisets of size n that cannot be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 9, 16, 27, 48, 78, 133
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

First differs from A292432 at a(9) = 48, A292432(9) = 46.
We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The normal multiset m = {1,1,1,2,2} has 3 partitions into a set of sets:
  {{1},{1,2},{1,2}}
  {{1},{1},{2},{1,2}}
  {{1},{1},{1},{2},{2}}
but none of these has distinct block-sums, so m is counted under a(5).
The a(2) = 1 through a(6) = 9 normal multisets:
  {1,1}  {1,1,1}  {1,1,1,1}  {1,1,1,1,1}  {1,1,1,1,1,1}
                  {1,1,1,2}  {1,1,1,1,2}  {1,1,1,1,1,2}
                  {1,2,2,2}  {1,1,1,2,2}  {1,1,1,1,2,2}
                             {1,1,2,2,2}  {1,1,1,1,2,3}
                             {1,2,2,2,2}  {1,1,1,2,2,2}
                                          {1,1,2,2,2,2}
                                          {1,2,2,2,2,2}
                                          {1,2,2,2,2,3}
                                          {1,2,3,3,3,3}
		

Crossrefs

Twice-partitions of this type are counted by A279785, without distinct sums A358914.
Without distinct sums we have A292432, complement A382214.
The strongly normal version without distinct sums is A292444, complement A381996.
Factorizations of this type are counted by A381633, without distinct sums A050326.
Normal multiset partitions of this type are counted by A381718, without distinct sums A116539.
For integer partitions the complement is A381990, ranks A381806, without distinct sums A382078, ranks A293243.
For integer partitions we have A381992, ranks A382075, without distinct sums A382077, ranks A382200.
The complement is counted by A382216.
The strongly normal version is A382430, complement A382460.
The case of a unique choice is counted by A382459, without distinct sums A382458.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,5}]

A331638 Number of binary matrices with nonzero rows, a total of n ones and each column with the same number of ones and columns in nonincreasing lexicographic order.

Original entry on oeis.org

1, 3, 5, 16, 17, 140, 65, 1395, 2969, 22176, 1025, 1050766, 4097, 13010328, 128268897, 637598438, 65537, 64864962683, 262145, 1676258452736, 28683380484257, 24908619669860, 4194305, 30567710172480050, 8756434134071649, 62128557507554504, 21271147396968151093
Offset: 1

Views

Author

Andrew Howroyd, Jan 23 2020

Keywords

Comments

The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.
From Gus Wiseman, Apr 03 2025: (Start)
Also the number of multiset partitions such that (1) the blocks together cover an initial interval of positive integers, (2) the blocks are sets of a common size, and (3) the block-sizes sum to n. For example, the a(1) = 1 through a(4) = 16 multiset partitions are:
{{1}} {{1,2}} {{1,2,3}} {{1,2,3,4}}
{{1},{1}} {{1},{1},{1}} {{1,2},{1,2}}
{{1},{2}} {{1},{1},{2}} {{1,2},{1,3}}
{{1},{2},{2}} {{1,2},{2,3}}
{{1},{2},{3}} {{1,2},{3,4}}
{{1,3},{2,3}}
{{1,3},{2,4}}
{{1,4},{2,3}}
{{1},{1},{1},{1}}
{{1},{1},{1},{2}}
{{1},{1},{2},{2}}
{{1},{1},{2},{3}}
{{1},{2},{2},{2}}
{{1},{2},{2},{3}}
{{1},{2},{3},{3}}
{{1},{2},{3},{4}}
(End)

Crossrefs

For constant instead of strict blocks we have A034729.
Without equal sizes we have A116540 (normal set multipartitions).
Without strict blocks we have A317583.
For distinct instead of equal sizes we have A382428, non-strict blocks A326517.
For equal sums instead of sizes we have A382429, non-strict blocks A326518.
Normal multiset partitions: A255903, A255906, A317532, A382203, A382204, A382216.

Formula

a(n) = Sum_{d|n} A330942(n/d, d).
a(p) = 2^(p-1) + 1 for prime p.

A371734 Maximal length of a factorization of n into factors > 1 all having different sums of prime indices.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Sum of prime indices is given by A056239.
Factorizations into factors > 1 all having different sums of prime indices are counted by A321469.

Examples

			The factorizations of 90 of this type are (2*3*15), (2*5*9), (2*45), (3*30), (5*18), (6*15), (90), so a(90) = 3.
		

Crossrefs

For set partitions of binary indices we have A000120, same sums A371735.
Positions of 1's are A000430.
Positions of terms > 1 are A080257.
Factorizations of this type are counted by A321469, same sums A321455.
For same instead of different sums we have A371733.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Table[Max[Length/@Select[facs[n],UnsameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_different_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == #facs));
    A371734(n, m=n, facs=List([])) = if(1==n, if(all_have_different_sum_of_pis(facs),#facs,0), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s = max(s,A371734(n/d, d, newfacs)))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A336138 Number of set partitions of the binary indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 5, 2, 4, 5, 12, 1, 2, 2, 5, 2, 5, 4, 13, 2, 4, 5, 13, 5, 13, 13, 43, 1, 2, 2, 5, 2, 5, 5, 13, 2, 5, 4, 14, 5, 13, 14, 42, 2, 4, 5, 13, 5, 14, 13, 43, 5, 13, 14, 45, 14, 44, 44, 160, 1, 2, 2, 5, 2, 5, 5, 14, 2, 5, 5, 14, 4, 13
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2020

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(n) set partitions for n = 3, 7, 11, 15, 23:
  {12}    {123}      {124}      {1234}        {1235}
  {1}{2}  {1}{23}    {1}{24}    {1}{234}      {1}{235}
          {13}{2}    {12}{4}    {12}{34}      {12}{35}
          {1}{2}{3}  {14}{2}    {123}{4}      {123}{5}
                     {1}{2}{4}  {124}{3}      {125}{3}
                                {13}{24}      {13}{25}
                                {134}{2}      {135}{2}
                                {1}{2}{34}    {15}{23}
                                {1}{23}{4}    {1}{2}{35}
                                {1}{24}{3}    {1}{25}{3}
                                {14}{2}{3}    {13}{2}{5}
                                {1}{2}{3}{4}  {15}{2}{3}
                                              {1}{2}{3}{5}
		

Crossrefs

The version for twice-partitions is A271619.
The version for partitions of partitions is (also) A271619.
These set partitions are counted by A275780.
The version for factorizations is A321469.
The version for normal multiset partitions is A326519.
The version for equal block-sums is A336137.
Set partitions with distinct block-lengths are A007837.
Set partitions of binary indices are A050315.
Twice-partitions with equal sums are A279787.
Partitions of partitions with equal sums are A305551.
Normal multiset partitions with equal block-lengths are A317583.
Multiset partitions with distinct block-sums are ranked by A326535.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[bpe[n]],UnsameQ@@Total/@#&]],{n,0,100}]

A383309 Numbers whose prime indices are prime powers > 1 with a common sum of prime indices.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 35, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 175, 179, 191, 209, 211, 227, 241, 243, 245, 277, 283, 289, 311, 331, 343, 353, 361, 367, 391, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The systems with these MM-numbers begin:
   1: {}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
   9: {{1},{1}}
  11: {{3}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  31: {{5}}
  35: {{2},{1,1}}
  41: {{6}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  59: {{7}}
  67: {{8}}
  81: {{1},{1},{1},{1}}
  83: {{9}}
  97: {{3,3}}
		

Crossrefs

Twice-partitions of this type are counted by A279789.
For just a common sum we have A326534.
For just constant blocks we have A355743.
Numbers without a factorization of this type are listed by A381871, counted by A381993.
The multiplicative version is A381995.
This is the odd case of A382215.
For strict instead of constant blocks we have A382304.
A001055 counts factorizations, strict A045778.
A023894 counts partitions into prime-powers.
A034699 gives maximal prime-power divisor.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A317141 counts coarsenings of prime indices, refinements A300383.
A353864 counts rucksack partitions, ranked by A353866.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@PrimePowerQ/@prix[#]&]

Formula

Equals A326534 /\ A355743.

A383308 Number of integer partitions of n that can be partitioned into sets with a common sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 6, 10, 13, 15, 13, 31
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

Any strict partition can be partitioned into a single set, so we have a lower bound a(n) >= A000009(n).

Examples

			The multiset (3,2,2,1,1) has partition {{3},{1,2},{1,2}}, so is counted under a(9).
The a(1) = 1 through a(9) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)         (9)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)        (54)
             (111)  (31)    (41)     (42)      (52)       (53)        (63)
                    (1111)  (11111)  (51)      (61)       (62)        (72)
                                     (222)     (421)      (71)        (81)
                                     (321)     (1111111)  (431)       (333)
                                     (2211)               (521)       (432)
                                     (111111)             (2222)      (531)
                                                          (3311)      (621)
                                                          (11111111)  (3321)
                                                                      (32211)
                                                                      (222111)
                                                                      (111111111)
		

Crossrefs

Twice-partitions of this type (into sets with a common sum) are counted by A279788.
Multiset partitions of this type are ranked by A326534 /\ A302478.
For distinct instead of equal sums we have A381992, see also A382077.
The complement is counted by A381994, ranks A381719.
Partitions of prime indices of this type are counted by A382080.
Normal multiset partitions of this type are counted by A382429, see A326518.
For constant instead of strict blocks we have A383093, ranks A383014.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations, strict A045778.
Set multipartitions: A089259, A116540, A270995, A296119, A318360.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&SameQ@@Total/@#&]]>0&]],{n,0,10}]
Previous Showing 21-30 of 32 results. Next