cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A335238 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are not pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 69, 70, 81, 88, 98, 104, 128, 130, 136, 138, 139, 141, 142, 160, 162, 163, 168, 170, 177, 184, 197, 198, 209, 216, 226, 232, 256, 260, 261, 262, 274, 276, 277, 278, 279, 282, 283, 285, 286, 288, 290, 292, 296, 321
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()          88: (2,1,4)      177: (2,1,4,1)
    2: (2)         98: (1,4,2)      184: (2,1,1,4)
    4: (3)        104: (1,2,4)      197: (1,4,2,1)
    8: (4)        128: (8)          198: (1,4,1,2)
   10: (2,2)      130: (6,2)        209: (1,2,4,1)
   16: (5)        136: (4,4)        216: (1,2,1,4)
   32: (6)        138: (4,2,2)      226: (1,1,4,2)
   34: (4,2)      139: (4,2,1,1)    232: (1,1,2,4)
   36: (3,3)      141: (4,1,2,1)    256: (9)
   40: (2,4)      142: (4,1,1,2)    260: (6,3)
   42: (2,2,2)    160: (2,6)        261: (6,2,1)
   64: (7)        162: (2,4,2)      262: (6,1,2)
   69: (4,2,1)    163: (2,4,1,1)    274: (4,3,2)
   70: (4,1,2)    168: (2,2,4)      276: (4,2,3)
   81: (2,4,1)    170: (2,2,2,2)    277: (4,2,2,1)
		

Crossrefs

The complement is A333228.
Not ignoring repeated parts gives A335239.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Coprime partitions are counted by A327516.
Non-coprime partitions are counted by A335240.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Coprime compositions are A333227.
- Compositions whose distinct parts are coprime are A333228.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!CoprimeQ@@Union[stc[#]]&]

A333226 Least common multiple of the n-th composition in standard order.

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 1, 4, 3, 2, 2, 3, 2, 2, 1, 5, 4, 6, 3, 6, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 1, 6, 5, 4, 4, 3, 6, 6, 3, 4, 6, 2, 2, 6, 2, 2, 2, 5, 4, 6, 3, 6, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 1, 7, 6, 10, 5, 12, 4, 4, 4, 12, 3, 6, 6, 3, 6, 6, 3, 10, 4, 6, 6, 6, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2020

Keywords

Comments

The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Crossrefs

The version for binary indices is A271410.
The version for prime indices is A290103.
Positions of first appearances are A333225.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of A066099.
- The sum of q(k) is A070939(k).
- The product of q(k) is A124758(k).
- The GCD of q(k) is A326674(k).
- The LCM of q(k) is A333226(k).

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[LCM@@stc[n],{n,100}]

A326673 The positions of ones in the reversed binary expansion of n have integer geometric mean.

Original entry on oeis.org

1, 2, 4, 8, 9, 11, 16, 32, 64, 128, 130, 138, 256, 257, 261, 264, 296, 388, 420, 512, 1024, 2048, 2052, 2084, 2306, 2316, 2338, 2348, 4096, 8192, 16384, 32768, 32769, 32776, 32777, 32899, 32904, 32907, 33024, 35072, 65536, 131072, 131074, 131084, 131106
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Examples

			The reversed binary expansion of 11 is (1,1,0,1) and {1,2,4} has integer geometric mean, so 11 is in the sequence.
		

Crossrefs

Partitions with integer geometric mean are A067539.
Subsets with integer geometric mean are A326027.
Factorizations with integer geometric mean are A326028.
Numbers whose binary digit positions have integer mean are A326669.
Numbers whose binary digit positions are relatively prime are A326674.
Numbers whose binary digit positions have integer geometric mean are A326672.

Programs

  • Mathematica
    Select[Range[1000],IntegerQ[GeometricMean[Join@@Position[Reverse[IntegerDigits[#,2]],1]]]&]
  • PARI
    ok(n)={ispower(prod(i=0, logint(n,2), if(bittest(n,i), i+1, 1)), hammingweight(n))}
    { for(n=1, 10^7, if(ok(n), print1(n, ", "))) } \\ Andrew Howroyd, Sep 29 2019

A337666 Numbers k such that any two parts of the k-th composition in standard order (A066099) have a common divisor > 1.

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 32, 34, 36, 40, 42, 64, 128, 130, 136, 138, 160, 162, 168, 170, 256, 260, 288, 292, 512, 514, 520, 522, 528, 544, 546, 552, 554, 640, 642, 648, 650, 672, 674, 680, 682, 1024, 2048, 2050, 2052, 2056, 2058, 2080, 2082, 2084, 2088, 2090, 2176
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2020

Keywords

Comments

Differs from A291165 in having 1090535424, corresponding to the composition (6,10,15).
This is a ranking sequence for pairwise non-coprime compositions.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
       0: ()          138: (4,2,2)       546: (4,4,2)
       2: (2)         160: (2,6)         552: (4,2,4)
       4: (3)         162: (2,4,2)       554: (4,2,2,2)
       8: (4)         168: (2,2,4)       640: (2,8)
      10: (2,2)       170: (2,2,2,2)     642: (2,6,2)
      16: (5)         256: (9)           648: (2,4,4)
      32: (6)         260: (6,3)         650: (2,4,2,2)
      34: (4,2)       288: (3,6)         672: (2,2,6)
      36: (3,3)       292: (3,3,3)       674: (2,2,4,2)
      40: (2,4)       512: (10)          680: (2,2,2,4)
      42: (2,2,2)     514: (8,2)         682: (2,2,2,2,2)
      64: (7)         520: (6,4)        1024: (11)
     128: (8)         522: (6,2,2)      2048: (12)
     130: (6,2)       528: (5,5)        2050: (10,2)
     136: (4,4)       544: (4,6)        2052: (9,3)
		

Crossrefs

A337604 counts these compositions of length 3.
A337667 counts these compositions.
A337694 is the version for Heinz numbers of partitions.
A337696 is the strict case.
A051185 and A305843 (covering) count pairwise intersecting set-systems.
A101268 counts pairwise coprime or singleton compositions.
A200976 and A328673 count pairwise non-coprime partitions.
A318717 counts strict pairwise non-coprime partitions.
A327516 counts pairwise coprime partitions.
A335236 ranks compositions neither a singleton nor pairwise coprime.
A337462 counts pairwise coprime compositions.
All of the following pertain to compositions in standard order (A066099):
- A000120 is length.
- A070939 is sum.
- A124767 counts runs.
- A233564 ranks strict compositions.
- A272919 ranks constant compositions.
- A291166 appears to rank relatively prime compositions.
- A326674 is greatest common divisor.
- A333219 is Heinz number.
- A333227 ranks coprime (Mathematica definition) compositions.
- A333228 ranks compositions with distinct parts coprime.
- A335235 ranks singleton or coprime compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[0,1000],stabQ[stc[#],CoprimeQ]&]

A335236 Numbers k such that the k-th composition in standard order (A066099) is not a singleton nor pairwise coprime.

Original entry on oeis.org

0, 10, 21, 22, 26, 34, 36, 40, 42, 43, 45, 46, 53, 54, 58, 69, 70, 73, 74, 76, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98, 100, 104, 106, 107, 109, 110, 117, 118, 122, 130, 136, 138, 139, 141, 142, 146, 147, 148, 149, 150, 153, 154, 156, 160, 162, 163, 164
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

These are compositions whose product is strictly greater than the LCM of their parts.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()            74: (3,2,2)        109: (1,2,1,2,1)
   10: (2,2)         76: (3,1,3)        110: (1,2,1,1,2)
   21: (2,2,1)       81: (2,4,1)        117: (1,1,2,2,1)
   22: (2,1,2)       82: (2,3,2)        118: (1,1,2,1,2)
   26: (1,2,2)       84: (2,2,3)        122: (1,1,1,2,2)
   34: (4,2)         85: (2,2,2,1)      130: (6,2)
   36: (3,3)         86: (2,2,1,2)      136: (4,4)
   40: (2,4)         87: (2,2,1,1,1)    138: (4,2,2)
   42: (2,2,2)       88: (2,1,4)        139: (4,2,1,1)
   43: (2,2,1,1)     90: (2,1,2,2)      141: (4,1,2,1)
   45: (2,1,2,1)     91: (2,1,2,1,1)    142: (4,1,1,2)
   46: (2,1,1,2)     93: (2,1,1,2,1)    146: (3,3,2)
   53: (1,2,2,1)     94: (2,1,1,1,2)    147: (3,3,1,1)
   54: (1,2,1,2)     98: (1,4,2)        148: (3,2,3)
   58: (1,1,2,2)    100: (1,3,3)        149: (3,2,2,1)
   69: (4,2,1)      104: (1,2,4)        150: (3,2,1,2)
   70: (4,1,2)      106: (1,2,2,2)      153: (3,1,3,1)
   73: (3,3,1)      107: (1,2,2,1,1)    154: (3,1,2,2)
		

Crossrefs

The version for prime indices is A316438.
The version for binary indices is A335237.
The complement is A335235.
The version with singletons allowed is A335239.
Binary indices are pairwise coprime or a singleton: A087087.
The version counting partitions is 1 + A335240.
All of the following pertain to compositions in standard order:
- Length is A000120.
- The parts are row k of A066099.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!(Length[stc[#]]==1||CoprimeQ@@stc[#])&]

A349051 Numbers k such that the k-th composition in standard order is an alternating permutation of {1..k} for some k.

Original entry on oeis.org

0, 1, 5, 6, 38, 41, 44, 50, 553, 562, 582, 593, 610, 652, 664, 708, 788, 808, 16966, 17036, 17048, 17172, 17192, 17449, 17458, 17542, 17676, 17712, 17940, 18000, 18513, 18530, 18593, 18626, 18968, 18992, 19496, 19536, 20625, 20676, 20769, 20868, 21256, 22600
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence together with the corresponding compositions begins:
        0: ()
        1: (1)
        5: (2,1)
        6: (1,2)
       38: (3,1,2)
       41: (2,3,1)
       44: (2,1,3)
       50: (1,3,2)
      553: (4,2,3,1)
      562: (4,1,3,2)
      582: (3,4,1,2)
      593: (3,2,4,1)
      610: (3,1,4,2)
      652: (2,4,1,3)
      664: (2,3,1,4)
      708: (2,1,4,3)
      788: (1,4,2,3)
      808: (1,3,2,4)
    16966: (5,3,4,1,2)
    17036: (5,2,4,1,3)
		

Crossrefs

These permutations are counted by A001250, complement A348615.
Compositions of this type are counted by A025047, complement A345192.
Subset of A333218, which ranks permutations of initial intervals.
Subset of A345167, which ranks alternating compositions, complement A345168.
A003242 counts Carlitz (anti-run) compositions.
A345163 counts normal partitions with an alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with an alternating permutation.
Compositions in standard order are the rows of A066099:
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- GCD and LCM are given by A326674 and A333226.
- Maximal runs and anti-runs are counted by A124767 and A333381.
- Heinz number is given by A333219.
- Runs-resistance is given by A333628.
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz (anti-run) compositions are ranked by A333489.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],Sort[stc[#]]==Range[Length[stc[#]]]&&wigQ[stc[#]]&]

Formula

Equals A333218 (permutation) /\ A345167 (alternating).

A335239 Numbers k such that the k-th composition in standard-order (A066099) does not have all pairwise coprime parts, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

0, 2, 4, 8, 10, 16, 21, 22, 26, 32, 34, 36, 40, 42, 43, 45, 46, 53, 54, 58, 64, 69, 70, 73, 74, 76, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98, 100, 104, 106, 107, 109, 110, 117, 118, 122, 128, 130, 136, 138, 139, 141, 142, 146, 147, 148, 149, 150, 153
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()            45: (2,1,2,1)     86: (2,2,1,2)
    2: (2)           46: (2,1,1,2)     87: (2,2,1,1,1)
    4: (3)           53: (1,2,2,1)     88: (2,1,4)
    8: (4)           54: (1,2,1,2)     90: (2,1,2,2)
   10: (2,2)         58: (1,1,2,2)     91: (2,1,2,1,1)
   16: (5)           64: (7)           93: (2,1,1,2,1)
   21: (2,2,1)       69: (4,2,1)       94: (2,1,1,1,2)
   22: (2,1,2)       70: (4,1,2)       98: (1,4,2)
   26: (1,2,2)       73: (3,3,1)      100: (1,3,3)
   32: (6)           74: (3,2,2)      104: (1,2,4)
   34: (4,2)         76: (3,1,3)      106: (1,2,2,2)
   36: (3,3)         81: (2,4,1)      107: (1,2,2,1,1)
   40: (2,4)         82: (2,3,2)      109: (1,2,1,2,1)
   42: (2,2,2)       84: (2,2,3)      110: (1,2,1,1,2)
   43: (2,2,1,1)     85: (2,2,2,1)    117: (1,1,2,2,1)
		

Crossrefs

The complement is A333227.
The version without singletons is A335236.
Ignoring repeated parts gives A335238.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
Non-coprime partitions are counted by A335240.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Coprime compositions are A333227.
- Compositions whose distinct parts are coprime are A333228.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!CoprimeQ@@stc[#]&]

A326672 The positions of ones in the binary expansion of n have integer geometric mean.

Original entry on oeis.org

1, 2, 4, 8, 9, 13, 16, 18, 26, 32, 36, 52, 64, 72, 104, 128, 144, 208, 256, 257, 288, 321, 416, 512, 514, 576, 642, 832, 1024, 1028, 1152, 1284, 1664, 2048, 2056, 2304, 2568, 3328, 4096, 4112, 4608, 5136, 6656, 8192, 8224, 9216, 10272, 13312, 16384, 16448
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2019

Keywords

Crossrefs

Partitions with integer geometric mean are A067539.
Subsets with integer geometric mean are A326027.
Factorizations with integer geometric mean are A326028.
Numbers whose binary expansion positions have integer mean are A326669.
Numbers whose binary expansion positions are relatively prime are A326674.
Numbers whose reversed binary expansion positions have integer geometric mean are A326673.

Programs

  • Mathematica
    Select[Range[100],IntegerQ[GeometricMean[Join@@Position[IntegerDigits[#,2],1]]]&]

A335240 Number of integer partitions of n that are not pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 5, 6, 11, 16, 25, 34, 51, 69, 98, 134, 181, 238, 316, 410, 536, 691, 887, 1122, 1423, 1788, 2246, 2800, 3483, 4300, 5304, 6508, 7983, 9745, 11869, 14399, 17436, 21040, 25367, 30482, 36568, 43735, 52239, 62239, 74073, 87950, 104277, 123348
Offset: 0

Views

Author

Gus Wiseman, May 30 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
These are also partitions that are a singleton or whose product is strictly greater than the LCM of their parts.

Examples

			The a(2) = 1 through a(9) = 16 partitions:
  (2)  (3)  (4)   (5)    (6)     (7)      (8)       (9)
            (22)  (221)  (33)    (322)    (44)      (63)
                         (42)    (331)    (62)      (333)
                         (222)   (421)    (332)     (432)
                         (2211)  (2221)   (422)     (441)
                                 (22111)  (2222)    (522)
                                          (3221)    (621)
                                          (3311)    (3222)
                                          (4211)    (3321)
                                          (22211)   (4221)
                                          (221111)  (22221)
                                                    (32211)
                                                    (33111)
                                                    (42111)
                                                    (222111)
                                                    (2211111)
		

Crossrefs

The version for relatively prime instead of coprime is A018783.
The Heinz numbers of these partitions are the complement of A302696.
The complement is counted by A327516.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Numbers whose binary indices are pairwise coprime are A326675.
All of the following pertain to compositions in standard order (A066099):
- GCD is A326674.
- LCM is A333226.
- Coprime compositions are A333227.
- Compositions whose distinct parts are coprime are A333228.
- Non-coprime compositions are A335239.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!CoprimeQ@@#&]],{n,0,30}]

A326699 Numerator of the average position of a 1 in the reversed binary expansion of n.

Original entry on oeis.org

1, 2, 3, 3, 2, 5, 2, 4, 5, 3, 7, 7, 8, 3, 5, 5, 3, 7, 8, 4, 3, 10, 11, 9, 10, 11, 3, 4, 13, 7, 3, 6, 7, 4, 3, 9, 10, 11, 3, 5, 11, 4, 13, 13, 7, 15, 16, 11, 4, 13, 7, 14, 15, 4, 17, 5, 4, 17, 18, 9, 19, 4, 7, 7, 4, 9, 10, 5, 11, 4, 13, 11, 4, 13, 7, 14, 15, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 20 2019

Keywords

Examples

			The sequence of fractions begins: 1, 2, 3/2, 3, 2, 5/2, 2, 4, 5/2, 3, 7/3, 7/2, 8/3, 3, 5/2, 5, 3, 7/2, 8/3, 4.
For example, the reversed binary expansion of 18 is (0,1,0,0,1), and the average of {2,5} is 7/2, so a(18) = 7.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L;
      L:= convert(n,base,2);
      L:= select(t -> L[t]=1, [$1..nops(L)]);
      numer(convert(L,`+`)/nops(L))
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 07 2019
  • Mathematica
    Table[Numerator[Mean[Join@@Position[Reverse[IntegerDigits[n,2]],1]]],{n,100}]
Previous Showing 11-20 of 26 results. Next