A327197
Number of set-systems covering n vertices with cut-connectivity 1.
Original entry on oeis.org
0, 1, 0, 24, 1984
Offset: 0
The a(3) = 24 set-systems:
{12}{13} {1}{12}{13} {1}{2}{12}{13} {1}{2}{3}{12}{13}
{12}{23} {1}{12}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23}
{13}{23} {1}{13}{23} {1}{2}{13}{23} {1}{2}{3}{13}{23}
{2}{12}{13} {1}{3}{12}{13}
{2}{12}{23} {1}{3}{12}{23}
{2}{13}{23} {1}{3}{13}{23}
{3}{12}{13} {2}{3}{12}{13}
{3}{12}{23} {2}{3}{12}{23}
{3}{13}{23} {2}{3}{13}{23}
The BII-numbers of these set-systems are
A327098.
The same for cut-connectivity 2 is
A327113.
The non-covering version is
A327128.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
A327053
Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting).
Original entry on oeis.org
1, 1, 3, 62, 24710, 2076948136, 9221293198653529144, 170141182628636920684331812494864430896
Offset: 0
The a(1) = 1 through a(2) = 3 set-systems:
{} {{1}} {{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
The a(3) = 62 set-systems:
1 2 123 1 2 3 123 1 2 12 13 23 1 2 3 12 13 23 1 2 3 12 13 23 123
1 3 123 1 12 13 23 1 2 3 12 123 1 2 3 12 13 123
2 3 123 1 2 12 123 1 2 3 13 123 1 2 3 12 23 123
1 12 123 1 2 13 123 1 2 3 23 123 1 2 3 13 23 123
1 13 123 1 2 23 123 1 3 12 13 23 1 2 12 13 23 123
12 13 23 1 3 12 123 2 3 12 13 23 1 3 12 13 23 123
2 12 123 1 3 13 123 1 2 12 13 123 2 3 12 13 23 123
2 23 123 1 3 23 123 1 2 12 23 123
3 13 123 2 12 13 23 1 2 13 23 123
3 23 123 2 3 12 123 1 3 12 13 123
12 13 123 2 3 13 123 1 3 12 23 123
12 23 123 2 3 23 123 1 3 13 23 123
13 23 123 3 12 13 23 2 3 12 13 123
1 12 13 123 2 3 12 23 123
1 12 23 123 2 3 13 23 123
1 13 23 123 1 12 13 23 123
2 12 13 123 2 12 13 23 123
2 12 23 123 3 12 13 23 123
2 13 23 123
3 12 13 123
3 12 23 123
3 13 23 123
12 13 23 123
The pairwise intersecting case is
A319774.
The BII-numbers of these set-systems are the intersection of
A326947 and
A326853.
The non-covering version is
A327052.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}]
A327100
BII-numbers of antichains of sets with cut-connectivity 1.
Original entry on oeis.org
1, 2, 8, 20, 36, 48, 128, 260, 272, 276, 292, 304, 308, 320, 516, 532, 544, 548, 560, 564, 576, 768, 784, 788, 800, 804, 1040, 1056, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304, 2308, 2324, 2336, 2352, 2560, 2564, 2576, 2596, 2608, 2816, 2820, 2832, 2848
Offset: 1
The sequence of all antichains of sets with vertex-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
8: {{3}}
20: {{1,2},{1,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
128: {{4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
308: {{1,2},{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
516: {{1,2},{2,4}}
532: {{1,2},{1,3},{2,4}}
544: {{2,3},{2,4}}
548: {{1,2},{2,3},{2,4}}
560: {{1,3},{2,3},{2,4}}
564: {{1,2},{1,3},{2,3},{2,4}}
BII numbers of antichains with vertex-connectivity >= 1 are
A326750.
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for cut-connectivity 1 are
A327098.
Cf.
A000120,
A000372,
A006126,
A048143,
A048793,
A070939,
A322390,
A326031,
A326749,
A326751,
A327071,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Select[Range[0,100],stableQ[bpe/@bpe[#],SubsetQ]&&cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]
A327128
Number of set-systems with n vertices whose edge-set has cut-connectivity 1.
Original entry on oeis.org
0, 1, 2, 27, 2084
Offset: 0
The BII-numbers of these set-systems are
A327098.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327113,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],cutConnSys[Union@@#,#]==1&]],{n,0,3}]
A337696
Numbers k such that the k-th composition in standard order (A066099) is strict and pairwise non-coprime, meaning the parts are distinct and any two of them have a common divisor > 1.
Original entry on oeis.org
0, 2, 4, 8, 16, 32, 34, 40, 64, 128, 130, 160, 256, 260, 288, 512, 514, 520, 544, 640, 1024, 2048, 2050, 2052, 2056, 2082, 2088, 2176, 2178, 2208, 2304, 2560, 2568, 2592, 4096, 8192, 8194, 8200, 8224, 8226, 8232, 8320, 8704, 8706, 8832, 10240, 10248, 10368
Offset: 1
The sequence together with the corresponding compositions begins:
0: () 512: (10) 2304: (3,9)
2: (2) 514: (8,2) 2560: (2,10)
4: (3) 520: (6,4) 2568: (2,6,4)
8: (4) 544: (4,6) 2592: (2,4,6)
16: (5) 640: (2,8) 4096: (13)
32: (6) 1024: (11) 8192: (14)
34: (4,2) 2048: (12) 8194: (12,2)
40: (2,4) 2050: (10,2) 8200: (10,4)
64: (7) 2052: (9,3) 8224: (8,6)
128: (8) 2056: (8,4) 8226: (8,4,2)
130: (6,2) 2082: (6,4,2) 8232: (8,2,4)
160: (2,6) 2088: (6,2,4) 8320: (6,8)
256: (9) 2176: (4,8) 8704: (4,10)
260: (6,3) 2178: (4,6,2) 8706: (4,8,2)
288: (3,6) 2208: (4,2,6) 8832: (4,2,8)
A318719 gives the Heinz numbers of the unordered version, with non-strict version
A337694.
A337667 counts the non-strict version.
A337462 counts pairwise coprime compositions.
A318749 counts pairwise non-coprime factorizations, with strict case
A319786.
All of the following pertain to compositions in standard order (
A066099):
-
A233564 ranks strict compositions.
-
A272919 ranks constant compositions.
-
A333227 ranks pairwise coprime compositions, or
A335235 if singletons are considered coprime.
-
A333228 ranks compositions whose distinct parts are pairwise coprime.
-
A335236 ranks compositions neither a singleton nor pairwise coprime.
-
A337561 is the pairwise coprime instead of pairwise non-coprime version, or
A337562 if singletons are considered coprime.
-
A337666 ranks the non-strict version.
Cf.
A082024,
A101268,
A302797,
A305713,
A319752,
A327040,
A327516,
A336737,
A337599,
A337604,
A337605.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[0,1000],UnsameQ@@stc[#]&&stabQ[stc[#],CoprimeQ]&]
A327061
BII-numbers of pairwise intersecting set-systems where every two covered vertices appear together in some edge (cointersecting).
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 52, 64, 65, 66, 68, 69, 70, 72, 80, 81, 84, 85, 88, 96, 98, 100, 102, 104, 112, 116, 120, 128, 256, 257, 384, 512, 514, 640, 772, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1284, 1285, 1408, 1536, 1538
Offset: 1
The sequence of all pairwise intersecting, cointersecting set-systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
The unlabeled multiset partition version is
A319765.
These set-systems are counted by
A327037 (covering) and
A327038 (not covering).
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Select[Range[0,100],stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
Comments