A327130
Number of set-systems covering n vertices with spanning edge-connectivity 2.
Original entry on oeis.org
0, 0, 0, 32, 9552
Offset: 0
The a(3) = 32 set-systems:
{12}{13}{23} {1}{12}{13}{23} {1}{2}{12}{13}{23} {1}{2}{3}{12}{13}{23}
{12}{13}{123} {2}{12}{13}{23} {1}{3}{12}{13}{23} {1}{2}{3}{12}{13}{123}
{12}{23}{123} {3}{12}{13}{23} {2}{3}{12}{13}{23} {1}{2}{3}{12}{23}{123}
{13}{23}{123} {1}{12}{13}{123} {1}{2}{12}{13}{123} {1}{2}{3}{13}{23}{123}
{1}{12}{23}{123} {1}{2}{12}{23}{123}
{1}{13}{23}{123} {1}{2}{13}{23}{123}
{2}{12}{13}{123} {1}{3}{12}{13}{123}
{2}{12}{23}{123} {1}{3}{12}{23}{123}
{2}{13}{23}{123} {1}{3}{13}{23}{123}
{3}{12}{13}{123} {2}{3}{12}{13}{123}
{3}{12}{23}{123} {2}{3}{12}{23}{123}
{3}{13}{23}{123} {2}{3}{13}{23}{123}
The BII-numbers of these set-systems are
A327108.
Set-systems with spanning edge-connectivity 1 are
A327145.
The restriction to simple graphs is
A327146.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],spanEdgeConn[Range[n],#]==2&]],{n,0,3}]
A327145
Number of connected set-systems with n vertices and at least one bridge (spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 4, 56, 4640
Offset: 0
The BII-numbers of these set-systems are
A327111.
Set systems with non-spanning edge-connectivity 1 are
A327196, with covering case
A327129.
Set systems with spanning edge-connectivity 2 are
A327130.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],spanEdgeConn[Range[n],#]==1&]],{n,0,3}]
A327077
Triangle read by rows where T(n,k) is the number of unlabeled simple connected graphs with n vertices and k bridges.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 0, 2, 0, 11, 4, 3, 0, 3, 0, 60, 25, 14, 7, 0, 6, 0, 502, 197, 91, 34, 18, 0, 11, 0, 7403, 2454, 826, 267, 100, 44, 0, 23, 0, 197442, 48201, 11383, 2800, 831, 259, 117, 0, 47, 0
Offset: 0
Triangle begins:
1
1 0
0 1 0
1 0 1 0
3 1 0 2 0
11 4 3 0 3 0
60 25 14 7 0 6 0
502 197 91 34 18 0 11 0
7403 2454 826 267 100 44 0 23 0
...
Row sums without the k = 0 column are
A052446.
A327129
Number of connected set-systems covering n vertices with at least one edge whose removal (along with any non-covered vertices) disconnects the set-system (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 2, 35, 2804
Offset: 0
The a(3) = 35 set-systems:
{123} {1}{12}{23} {1}{2}{12}{13} {1}{2}{3}{12}{13}
{1}{13}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23}
{1}{2}{123} {1}{2}{13}{23} {1}{2}{3}{13}{23}
{1}{3}{123} {1}{2}{3}{123} {1}{2}{3}{12}{123}
{2}{12}{13} {1}{3}{12}{13} {1}{2}{3}{13}{123}
{2}{13}{23} {1}{3}{12}{23} {1}{2}{3}{23}{123}
{2}{3}{123} {1}{3}{13}{23}
{3}{12}{13} {2}{3}{12}{13}
{3}{12}{23} {2}{3}{12}{23}
{1}{23}{123} {2}{3}{13}{23}
{2}{13}{123} {1}{2}{13}{123}
{3}{12}{123} {1}{2}{23}{123}
{1}{3}{12}{123}
{1}{3}{23}{123}
{2}{3}{12}{123}
{2}{3}{13}{123}
The restriction to simple graphs is
A327079, with non-covering version
A327231.
The version for spanning edge-connectivity is
A327145, with BII-numbers
A327111.
The BII-numbers of these set-systems are
A327099.
The non-covering version is
A327196.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&eConn[#]==1&]],{n,0,3}]
A327073
Number of labeled simple connected graphs with n vertices and exactly one bridge.
Original entry on oeis.org
0, 0, 1, 0, 12, 200, 7680, 506856, 58934848, 12205506096, 4595039095680, 3210660115278000, 4240401342141499392, 10743530775519296581944, 52808688280248604235191296, 507730995579614277599205009240, 9603347831901155679455061048606720, 358743609478638769812094362544644831968
Offset: 0
Connected graphs with no bridges are
A007146.
Connected graphs whose bridges are all leaves are
A322395.
Connected graphs with at least one bridge are
A327071.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==1&]],{n,0,5}]
-
\\ See A095983.
seq(n)={my(p=x*deriv(log(sum(k=0, n-1, 2^binomial(k, 2) * x^k / k!) + O(x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))^2/2), -(n+1)) } \\ Andrew Howroyd, Dec 28 2020
A327352
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
Original entry on oeis.org
1, 1, 1, 4, 1, 14, 4, 1, 83, 59, 23, 2, 1232, 2551, 2792, 887, 107, 10, 1
Offset: 0
Triangle begins:
1
1 1
4 1
14 4 1
83 59 23 2
1232 2551 2792 887 107 10 1
Row n = 3 counts the following antichains:
{} {{1,2,3}} {{1,2},{1,3},{2,3}}
{{1}} {{1,2},{1,3}}
{{2}} {{1,2},{2,3}}
{{3}} {{1,3},{2,3}}
{{1,2}}
{{1,3}}
{{2,3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1},{2,3}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{2},{3}}
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}
A327100
BII-numbers of antichains of sets with cut-connectivity 1.
Original entry on oeis.org
1, 2, 8, 20, 36, 48, 128, 260, 272, 276, 292, 304, 308, 320, 516, 532, 544, 548, 560, 564, 576, 768, 784, 788, 800, 804, 1040, 1056, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304, 2308, 2324, 2336, 2352, 2560, 2564, 2576, 2596, 2608, 2816, 2820, 2832, 2848
Offset: 1
The sequence of all antichains of sets with vertex-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
8: {{3}}
20: {{1,2},{1,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
128: {{4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
308: {{1,2},{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
516: {{1,2},{2,4}}
532: {{1,2},{1,3},{2,4}}
544: {{2,3},{2,4}}
548: {{1,2},{2,3},{2,4}}
560: {{1,3},{2,3},{2,4}}
564: {{1,2},{1,3},{2,3},{2,4}}
BII numbers of antichains with vertex-connectivity >= 1 are
A326750.
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for cut-connectivity 1 are
A327098.
Cf.
A000120,
A000372,
A006126,
A048143,
A048793,
A070939,
A322390,
A326031,
A326749,
A326751,
A327071,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Select[Range[0,100],stableQ[bpe/@bpe[#],SubsetQ]&&cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]
A327074
Number of unlabeled connected graphs with n vertices and exactly one bridge.
Original entry on oeis.org
0, 0, 1, 0, 1, 4, 25, 197, 2454, 48201, 1604016, 93315450, 9696046452, 1822564897453, 625839625866540, 395787709599238772, 464137745175250610865, 1015091996575508453655611, 4160447945769725861550193834, 32088553211819016484736085677320, 467409605282347770524641700949750858
Offset: 0
Unlabeled graphs with at least one bridge are
A052446.
The enumeration of unlabeled connected graphs by number of bridges is
A327077.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are
A327109.
A327147
Smallest BII-number of a set-system with spanning edge-connectivity n.
Original entry on oeis.org
0, 1, 52, 116, 3952, 8052
Offset: 0
The sequence of terms together with their corresponding set-systems begins:
0: {}
1: {{1}}
52: {{1,2},{1,3},{2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
3952: {{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4}}
8052: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}}
The same for cut-connectivity is
A327234.
The same for non-spanning edge-connectivity is
A002450.
The spanning edge-connectivity of the set-system with BII-number n is
A327144(n).
Cf.
A000120,
A048793,
A070939,
A323818,
A326031,
A326786,
A326787,
A327041,
A327069,
A327076,
A327108,
A327111,
A327130,
A327145.
A327196
Number of connected set-systems with n vertices and at least one bridge that is not an endpoint (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 4, 44, 2960
Offset: 0
Non-isomorphic representatives of the a(3) = 44 set-systems:
{{1}}
{{1,2}}
{{1,2,3}}
{{1},{2},{1,2}}
{{1},{1,2},{2,3}}
{{1},{2},{1,2,3}}
{{1},{2,3},{1,2,3}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,3},{2,3}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,3},{1,2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1},{2},{3},{1,2},{1,2,3}}
The BII-numbers of these set-systems are
A327099.
The restriction to simple graphs is
A327231.
Set-systems with spanning edge-connectivity 1 are
A327145.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],eConn[#]==1&]],{n,0,3}]
Comments