A361907
Number of integer partitions of n such that (length) * (maximum) > 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1
The a(7) = 3 through a(10) = 11 partitions:
(511) (611) (711) (721)
(4111) (5111) (5211) (811)
(31111) (41111) (6111) (6211)
(311111) (42111) (7111)
(51111) (52111)
(411111) (61111)
(3111111) (421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
Reversing the inequality gives
A361852.
A051293 counts subsets with integer mean.
A116608 counts partitions by number of distinct parts.
Cf.
A027193,
A111907,
A237752,
A237755,
A237821,
A237824,
A237984,
A324562,
A326622,
A327482,
A349156,
A360071,
A361394.
A359896
Number of odd-length integer partitions of n whose parts do not have the same mean as median.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 2, 6, 9, 11, 15, 27, 32, 50, 58, 72, 112, 149, 171, 246, 286, 359, 477, 630, 773, 941, 1181, 1418, 1749, 2289, 2668, 3429, 4162, 4878, 6074, 7091, 8590, 10834, 12891, 15180, 18491, 22314, 25845, 31657, 36394, 42269, 52547, 62414, 73576, 85701
Offset: 0
The a(4) = 1 through a(9) = 11 partitions:
(211) (221) (411) (322) (332) (441)
(311) (21111) (331) (422) (522)
(421) (431) (621)
(511) (521) (711)
(22111) (611) (22221)
(31111) (22211) (32211)
(32111) (33111)
(41111) (42111)
(2111111) (51111)
(2211111)
(3111111)
These partitions are ranked by
A359892.
-
Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]
A359898
Number of strict integer partitions of n whose parts do not have the same mean as median.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 4, 6, 5, 11, 12, 14, 21, 29, 26, 44, 44, 58, 68, 92, 92, 118, 137, 165, 192, 241, 223, 324, 353, 405, 467, 518, 594, 741, 809, 911, 987, 1239, 1276, 1588, 1741, 1823, 2226, 2566, 2727, 3138, 3413, 3905, 4450, 5093, 5434, 6134
Offset: 0
The a(7) = 1 through a(13) = 11 partitions:
(4,2,1) (4,3,1) (6,2,1) (5,3,2) (5,4,2) (6,5,1) (6,4,3)
(5,2,1) (5,4,1) (6,3,2) (7,3,2) (6,5,2)
(6,3,1) (6,4,1) (8,3,1) (7,4,2)
(7,2,1) (7,3,1) (9,2,1) (7,5,1)
(8,2,1) (6,3,2,1) (8,3,2)
(5,3,2,1) (8,4,1)
(9,3,1)
(10,2,1)
(5,4,3,1)
(6,4,2,1)
(7,3,2,1)
The complement is counted by
A359897.
A008289 counts strict partitions by mean.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Mean[#]!=Median[#]&]],{n,0,30}]
A360252
Numbers for which the prime indices have greater mean than the distinct prime indices.
Original entry on oeis.org
18, 50, 54, 75, 98, 108, 147, 150, 162, 242, 245, 250, 294, 324, 338, 350, 363, 375, 450, 486, 490, 500, 507, 578, 588, 605, 648, 686, 722, 726, 735, 750, 845, 847, 867, 882, 972, 1014, 1029, 1050, 1058, 1078, 1083, 1125, 1183, 1210, 1250, 1274, 1350, 1372
Offset: 1
The terms together with their prime indices begin:
18: {1,2,2}
50: {1,3,3}
54: {1,2,2,2}
75: {2,3,3}
98: {1,4,4}
108: {1,1,2,2,2}
147: {2,4,4}
150: {1,2,3,3}
162: {1,2,2,2,2}
242: {1,5,5}
245: {3,4,4}
250: {1,3,3,3}
294: {1,2,4,4}
324: {1,1,2,2,2,2}
For example, the prime indices of 350 are {1,3,3,4} with mean 11/4, and the distinct prime indices are {1,3,4} with mean 8/3, so 350 is in the sequence.
These partitions are counted by
A360250.
A316413 lists numbers whose indices have integer mean, distinct
A326621.
Cf.
A000975,
A051293,
A058398,
A067340,
A067538,
A324570,
A327482,
A359903,
A360005,
A360241,
A360248.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Mean[prix[#]]>Mean[Union[prix[#]]]&]
A360253
Numbers for which the prime indices have lesser mean than the distinct prime indices.
Original entry on oeis.org
12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 92, 96, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200, 204, 207, 208, 212, 220
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
52: {1,1,6}
56: {1,1,1,4}
60: {1,1,2,3}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
For example, the prime indices of 350 are {1,3,3,4} with mean 11/4, and the distinct prime indices are {1,3,4} with mean 8/3, so 350 is not in the sequence.
These partitions are counted by
A360251.
A316413 lists numbers whose indices have integer mean, distinct
A326621.
Cf.
A000975,
A051293,
A058398,
A067340,
A067538,
A324570,
A327482,
A359903,
A360005,
A360241,
A360248.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Mean[prix[#]]
A363947
Number of integer partitions of n with mean < 3/2.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 7, 7, 7, 12, 12, 12, 19, 19, 19, 30, 30, 30, 45, 45, 45, 67, 67, 67, 97, 97, 97, 139, 139, 139, 195, 195, 195, 272, 272, 272, 373, 373, 373, 508, 508, 508, 684, 684, 684, 915, 915, 915, 1212, 1212, 1212, 1597, 1597, 1597, 2087
Offset: 0
The partition y = (2,2,1) has mean 5/3, which is not less than 3/2, so y is not counted under 5.
The a(1) = 1 through a(8) = 4 partitions:
(1) (11) (111) (211) (2111) (21111) (22111) (221111)
(1111) (11111) (111111) (31111) (311111)
(211111) (2111111)
(1111111) (11111111)
The high version is
A000012 (all ones).
This is
A000070 with each term repeated three times (see
A025065 for two).
These partitions have ranks
A363948.
The complement is counted by
A364059.
A327482 counts partitions by integer mean.
Cf.
A000041,
A002865,
A026905,
A027336,
A237984,
A241131,
A327472,
A363724,
A363745,
A363943,
A363949.
-
Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]==1&]],{n,0,15}]
A359891
Members of A026424 (numbers with an odd number of prime factors) whose prime indices have the same mean as median.
Original entry on oeis.org
2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 30, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 110, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
7: {4}
8: {1,1,1}
11: {5}
13: {6}
17: {7}
19: {8}
23: {9}
27: {2,2,2}
29: {10}
30: {1,2,3}
31: {11}
32: {1,1,1,1,1}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is not in the sequence.
A subset of
A026424 = numbers with odd bigomega.
The RHS (median of prime indices) is
A360005/2.
A316413 lists numbers whose prime indices have integer mean.
A359908 lists numbers whose prime indices have integer median.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]==Median[prix[#]]&]
A361852
Number of integer partitions of n such that (length) * (maximum) < 2n.
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 12, 17, 21, 27, 37, 41, 58, 67, 80, 106, 126, 153, 193, 209, 263, 326, 402, 419, 565, 650, 694, 891, 1088, 1120, 1419, 1672, 1987, 2245, 2345, 2856, 3659, 3924, 4519, 4975, 6407, 6534, 8124, 8280, 9545, 12937, 13269, 13788, 16474, 20336
Offset: 1
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (331)
(11111) (2211) (421)
(21111) (2221)
(111111) (3211)
(22111)
(211111)
(1111111)
For example, the partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 < 2*7, so y is counted under a(7).
For length instead of mean we have
A237754.
For median instead of mean we have
A361858.
The complement is counted by
A361906.
Reversing the inequality gives
A361907.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Cf.
A027193,
A111907,
A116608,
A237824,
A237984,
A324517,
A327482,
A349156,
A360068,
A360071,
A361394.
A363951
Numbers whose prime indices satisfy (length) = (mean), or (sum) = (length)^2.
Original entry on oeis.org
2, 9, 10, 68, 78, 98, 99, 105, 110, 125, 328, 444, 558, 620, 783, 812, 870, 966, 988, 1012, 1035, 1150, 1156, 1168, 1197, 1254, 1326, 1330, 1425, 1521, 1666, 1683, 1690, 1704, 1785, 1870, 1911, 2002, 2125, 2145, 2275, 2401, 2412, 2541, 2662, 2680, 2695, 3025
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
10: {1,3}
68: {1,1,7}
78: {1,2,6}
98: {1,4,4}
99: {2,2,5}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
328: {1,1,1,13}
444: {1,1,2,12}
558: {1,2,2,11}
620: {1,1,3,11}
783: {2,2,2,10}
812: {1,1,4,10}
870: {1,2,3,10}
966: {1,2,4,9}
988: {1,1,6,8}
Partitions of this type are counted by
A364055, without zeros
A206240.
A363950 ranks partitions with low mean 2, counted by
A026905 redoubled.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Mean[prix[#]]==PrimeOmega[#]&]
A359892
Members of A026424 (numbers with an odd number of prime factors) whose prime indices do not have the same mean as median.
Original entry on oeis.org
12, 18, 20, 28, 42, 44, 45, 48, 50, 52, 63, 66, 68, 70, 72, 75, 76, 78, 80, 92, 98, 99, 102, 108, 112, 114, 116, 117, 120, 124, 130, 138, 147, 148, 153, 154, 162, 164, 165, 168, 170, 171, 172, 174, 175, 176, 180, 182, 186, 188, 190, 192, 195, 200, 207, 208
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
28: {1,1,4}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
50: {1,3,3}
52: {1,1,6}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
70: {1,3,4}
72: {1,1,1,2,2}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is in the sequence.
A subset of
A026424 = numbers with odd bigomega.
The RHS (median of prime indices) is
A360005/2.
A316413 lists numbers whose prime indices have integer mean.
A359902 counts odd-length partitions by median.
Cf.
A240219,
A327473,
A327476,
A348551,
A359894,
A359898,
A359899,
A359900,
A359911,
A359912,
A360006-
A360009.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]!=Median[prix[#]]&]
Comments