cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A361907 Number of integer partitions of n such that (length) * (maximum) > 2*n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) > 2*(mean).
These are partitions whose complement (see example) has size > n.

Examples

			The a(7) = 3 through a(10) = 11 partitions:
  (511)    (611)     (711)      (721)
  (4111)   (5111)    (5211)     (811)
  (31111)  (41111)   (6111)     (6211)
           (311111)  (42111)    (7111)
                     (51111)    (52111)
                     (411111)   (61111)
                     (3111111)  (421111)
                                (511111)
                                (3211111)
                                (4111111)
                                (31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
  o o o
  o o .
  o . .
  o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
		

Crossrefs

For length instead of mean we have A237751, reverse A237754.
For minimum instead of mean we have A237820, reverse A053263.
The complement is counted by A361851, median A361848.
Reversing the inequality gives A361852.
The equal version is A361853.
For median instead of mean we have A361857, reverse A361858.
Allowing equality gives A361906, median A361859.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A268192 counts partitions by complement size, ranks A326844.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#>2n&]],{n,30}]

A359896 Number of odd-length integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 6, 9, 11, 15, 27, 32, 50, 58, 72, 112, 149, 171, 246, 286, 359, 477, 630, 773, 941, 1181, 1418, 1749, 2289, 2668, 3429, 4162, 4878, 6074, 7091, 8590, 10834, 12891, 15180, 18491, 22314, 25845, 31657, 36394, 42269, 52547, 62414, 73576, 85701
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(4) = 1 through a(9) = 11 partitions:
  (211)  (221)  (411)    (322)    (332)      (441)
         (311)  (21111)  (331)    (422)      (522)
                         (421)    (431)      (621)
                         (511)    (521)      (711)
                         (22111)  (611)      (22221)
                         (31111)  (22211)    (32211)
                                  (32111)    (33111)
                                  (41111)    (42111)
                                  (2111111)  (51111)
                                             (2211111)
                                             (3111111)
		

Crossrefs

These partitions are ranked by A359892.
The any-length version is A359894, complement A240219, strict A359898.
The complement is counted by A359895, ranked by A359891.
The strict case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]

A359898 Number of strict integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 4, 6, 5, 11, 12, 14, 21, 29, 26, 44, 44, 58, 68, 92, 92, 118, 137, 165, 192, 241, 223, 324, 353, 405, 467, 518, 594, 741, 809, 911, 987, 1239, 1276, 1588, 1741, 1823, 2226, 2566, 2727, 3138, 3413, 3905, 4450, 5093, 5434, 6134
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(7) = 1 through a(13) = 11 partitions:
  (4,2,1)  (4,3,1)  (6,2,1)  (5,3,2)  (5,4,2)    (6,5,1)    (6,4,3)
           (5,2,1)           (5,4,1)  (6,3,2)    (7,3,2)    (6,5,2)
                             (6,3,1)  (6,4,1)    (8,3,1)    (7,4,2)
                             (7,2,1)  (7,3,1)    (9,2,1)    (7,5,1)
                                      (8,2,1)    (6,3,2,1)  (8,3,2)
                                      (5,3,2,1)             (8,4,1)
                                                            (9,3,1)
                                                            (10,2,1)
                                                            (5,4,3,1)
                                                            (6,4,2,1)
                                                            (7,3,2,1)
		

Crossrefs

The non-strict version is ranked by A359890, complement A359889.
The non-strict version is A359894, complement A240219.
The complement is counted by A359897.
The odd-length case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Mean[#]!=Median[#]&]],{n,0,30}]

A360252 Numbers for which the prime indices have greater mean than the distinct prime indices.

Original entry on oeis.org

18, 50, 54, 75, 98, 108, 147, 150, 162, 242, 245, 250, 294, 324, 338, 350, 363, 375, 450, 486, 490, 500, 507, 578, 588, 605, 648, 686, 722, 726, 735, 750, 845, 847, 867, 882, 972, 1014, 1029, 1050, 1058, 1078, 1083, 1125, 1183, 1210, 1250, 1274, 1350, 1372
Offset: 1

Views

Author

Gus Wiseman, Feb 09 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    18: {1,2,2}
    50: {1,3,3}
    54: {1,2,2,2}
    75: {2,3,3}
    98: {1,4,4}
   108: {1,1,2,2,2}
   147: {2,4,4}
   150: {1,2,3,3}
   162: {1,2,2,2,2}
   242: {1,5,5}
   245: {3,4,4}
   250: {1,3,3,3}
   294: {1,2,4,4}
   324: {1,1,2,2,2,2}
For example, the prime indices of 350 are {1,3,3,4} with mean 11/4, and the distinct prime indices are {1,3,4} with mean 8/3, so 350 is in the sequence.
		

Crossrefs

For unequal instead of greater we have A360246, counted by A360242.
For equal instead of greater we have A360247, counted by A360243.
These partitions are counted by A360250.
For less instead of greater we have A360253, counted by A360251.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose indices have integer mean, distinct A326621.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]>Mean[Union[prix[#]]]&]

A360253 Numbers for which the prime indices have lesser mean than the distinct prime indices.

Original entry on oeis.org

12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 92, 96, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200, 204, 207, 208, 212, 220
Offset: 1

Views

Author

Gus Wiseman, Feb 09 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
For example, the prime indices of 350 are {1,3,3,4} with mean 11/4, and the distinct prime indices are {1,3,4} with mean 8/3, so 350 is not in the sequence.
		

Crossrefs

These partitions are counted by A360251.
For unequal instead of less we have A360246, counted by A360242.
For equal instead of less we have A360247, counted by A360243.
For greater instead of less we have A360252, counted by A360250.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose indices have integer mean, distinct A326621.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]
    				

A363947 Number of integer partitions of n with mean < 3/2.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 7, 7, 7, 12, 12, 12, 19, 19, 19, 30, 30, 30, 45, 45, 45, 67, 67, 67, 97, 97, 97, 139, 139, 139, 195, 195, 195, 272, 272, 272, 373, 373, 373, 508, 508, 508, 684, 684, 684, 915, 915, 915, 1212, 1212, 1212, 1597, 1597, 1597, 2087
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Examples

			The partition y = (2,2,1) has mean 5/3, which is not less than 3/2, so y is not counted under 5.
The a(1) = 1 through a(8) = 4 partitions:
  (1)  (11)  (111)  (211)   (2111)   (21111)   (22111)    (221111)
                    (1111)  (11111)  (111111)  (31111)    (311111)
                                               (211111)   (2111111)
                                               (1111111)  (11111111)
		

Crossrefs

The high version is A000012 (all ones).
This is A000070 with each term repeated three times (see A025065 for two).
These partitions have ranks A363948.
The complement is counted by A364059.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A327482 counts partitions by integer mean.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]==1&]],{n,0,15}]

A359891 Members of A026424 (numbers with an odd number of prime factors) whose prime indices have the same mean as median.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 30, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 110, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  23: {9}
  27: {2,2,2}
  29: {10}
  30: {1,2,3}
  31: {11}
  32: {1,1,1,1,1}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is not in the sequence.
		

Crossrefs

A subset of A026424 = numbers with odd bigomega.
The LHS (mean of prime indices) is A326567/A326568.
This is the odd-length case of A359889, complement A359890.
The complement is A359892.
These partitions are counted by A359895, any-length A240219.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359893 and A359901 count partitions by median, odd-length A359902.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]==Median[prix[#]]&]

Formula

Intersection of A026424 and A359889.

A361852 Number of integer partitions of n such that (length) * (maximum) < 2n.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 12, 17, 21, 27, 37, 41, 58, 67, 80, 106, 126, 153, 193, 209, 263, 326, 402, 419, 565, 650, 694, 891, 1088, 1120, 1419, 1672, 1987, 2245, 2345, 2856, 3659, 3924, 4519, 4975, 6407, 6534, 8124, 8280, 9545, 12937, 13269, 13788, 16474, 20336
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2023

Keywords

Comments

Also partitions such that (maximum) < 2*(mean).

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (331)
                            (11111)  (2211)    (421)
                                     (21111)   (2221)
                                     (111111)  (3211)
                                               (22111)
                                               (211111)
                                               (1111111)
For example, the partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 < 2*7, so y is counted under a(7).
		

Crossrefs

For length instead of mean we have A237754.
Allowing equality gives A237755, for median A361848.
For equal median we have A361849, ranks A361856.
The equal version is A361853, ranks A361855.
For median instead of mean we have A361858.
The complement is counted by A361906.
Reversing the inequality gives A361907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#<2n&]],{n,30}]

A363951 Numbers whose prime indices satisfy (length) = (mean), or (sum) = (length)^2.

Original entry on oeis.org

2, 9, 10, 68, 78, 98, 99, 105, 110, 125, 328, 444, 558, 620, 783, 812, 870, 966, 988, 1012, 1035, 1150, 1156, 1168, 1197, 1254, 1326, 1330, 1425, 1521, 1666, 1683, 1690, 1704, 1785, 1870, 1911, 2002, 2125, 2145, 2275, 2401, 2412, 2541, 2662, 2680, 2695, 3025
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    9: {2,2}
   10: {1,3}
   68: {1,1,7}
   78: {1,2,6}
   98: {1,4,4}
   99: {2,2,5}
  105: {2,3,4}
  110: {1,3,5}
  125: {3,3,3}
  328: {1,1,1,13}
  444: {1,1,2,12}
  558: {1,2,2,11}
  620: {1,1,3,11}
  783: {2,2,2,10}
  812: {1,1,4,10}
  870: {1,2,3,10}
  966: {1,2,4,9}
  988: {1,1,6,8}
		

Crossrefs

Partitions of this type are counted by A364055, without zeros A206240.
The RHS is A001222.
The LHS is A326567/A326568.
A008284 counts partitions by length, A058398 by mean.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, sum A056239.
A124943 counts partitions by low median, high A124944.
A316413 ranks partitions with integer mean, counted by A067538.
A326622 counts factorizations with integer mean, strict A328966.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==PrimeOmega[#]&]

A359892 Members of A026424 (numbers with an odd number of prime factors) whose prime indices do not have the same mean as median.

Original entry on oeis.org

12, 18, 20, 28, 42, 44, 45, 48, 50, 52, 63, 66, 68, 70, 72, 75, 76, 78, 80, 92, 98, 99, 102, 108, 112, 114, 116, 117, 120, 124, 130, 138, 147, 148, 153, 154, 162, 164, 165, 168, 170, 171, 172, 174, 175, 176, 180, 182, 186, 188, 190, 192, 195, 200, 207, 208
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   28: {1,1,4}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
   72: {1,1,1,2,2}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is in the sequence.
		

Crossrefs

A subset of A026424 = numbers with odd bigomega.
The LHS (mean of prime indices) is A326567/A326568.
This is the odd-length case of A359890, complement A359889.
The complement is A359891.
These partitions are counted by A359896, complement A359895.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359902 counts odd-length partitions by median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]!=Median[prix[#]]&]

Formula

Intersection of A026424 and A359890.
Previous Showing 41-50 of 75 results. Next