A359904
Numbers whose prime factors and prime signature have the same mean.
Original entry on oeis.org
1, 4, 27, 400, 3125, 9072, 10800, 14580, 24057, 35721, 50625, 73984, 117760, 134400, 158976, 181440, 191488, 389376, 452709, 544000, 583680, 664848, 731136, 774400, 823543, 878592, 965888
Offset: 1
The terms together with their prime factors begin:
1: {}
4: {2,2}
27: {3,3,3}
400: {2,2,2,2,5,5}
3125: {5,5,5,5,5}
9072: {2,2,2,2,3,3,3,3,7}
10800: {2,2,2,2,3,3,3,5,5}
14580: {2,2,3,3,3,3,3,3,5}
24057: {3,3,3,3,3,3,3,11}
35721: {3,3,3,3,3,3,7,7}
50625: {3,3,3,3,5,5,5,5}
73984: {2,2,2,2,2,2,2,2,17,17}
For prime indices instead of factors we have
A359903.
A067340 lists numbers whose prime signature has integer mean.
A078175 = numbers whose prime factors have integer mean, indices
A316413.
A360005 gives median of prime indices (times two).
-
prifac[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
prisig[n_]:=If[n==1,{},Last/@FactorInteger[n]];
Select[Range[1000],Mean[prifac[#]]==Mean[prisig[#]]&]
A360952
Number of strict integer partitions of n with non-integer median; a(0) = 1.
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 0, 3, 0, 4, 1, 6, 1, 8, 4, 11, 5, 15, 10, 20, 13, 27, 22, 36, 28, 47, 43, 63, 56, 82, 79, 107, 103, 140, 141, 180, 181, 232, 242, 299, 308, 380, 402, 483, 511, 613, 656, 772, 824, 969, 1047, 1215, 1309, 1514, 1642, 1882, 2039, 2334, 2539, 2882
Offset: 0
The a(0) = 1 through a(15) = 11 partitions (0 = {}, A..E = 10..14):
0 . . 21 . 32 . 43 . 54 4321 65 6321 76 5432 87
41 52 63 74 85 6431 96
61 72 83 94 6521 A5
81 92 A3 8321 B4
A1 B2 C3
5321 C1 D2
5431 E1
7321 6432
7431
7521
9321
The strict complement is counted by
A359907.
A360005(n)/2 ranks the median statistic.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!IntegerQ[Median[#]]&]],{n,0,30}]
A362560
Number of integer partitions of n whose weighted sum is not divisible by n.
Original entry on oeis.org
0, 1, 1, 4, 5, 8, 12, 19, 25, 38, 51, 70, 93, 124, 162, 217, 279, 360, 462, 601, 750, 955, 1203, 1502, 1881, 2336, 2892, 3596, 4407, 5416, 6623, 8083, 9830, 11943, 14471, 17488, 21059, 25317, 30376, 36424, 43489, 51906, 61789, 73498, 87186, 103253, 122098
Offset: 1
The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7).
The a(2) = 1 through a(7) = 12 partitions:
(11) (21) (22) (32) (33) (43)
(31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(2211) (421)
(21111) (511)
(111111) (2221)
(4111)
(22111)
(31111)
(211111)
For median instead of mean we have
A322439 aerated, complement
A362558.
The complement is counted by
A362559.
A264034 counts partitions by weighted sum.
A318283 = weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A001227,
A051293,
A067538,
A240219,
A261079,
A326622,
A349156,
A360068,
A360069,
A360241,
A362051.
-
Table[Length[Select[IntegerPartitions[n],!Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]
A327483
Triangle read by rows where T(n,k) is the number of integer partitions of 2^n with mean 2^k, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 22, 34, 8, 1, 1, 231, 919, 249, 16, 1, 1, 8349, 112540, 55974, 1906, 32, 1, 1, 1741630, 107608848, 161410965, 4602893, 14905, 64, 1, 1, 4351078600, 1949696350591, 12623411092535, 676491536028, 461346215, 117874, 128, 1
Offset: 0
Triangle begins:
1
1 1
1 2 1
1 5 4 1
1 22 34 8 1
1 231 919 249 16 1
1 8349 112540 55974 1906 32 1
1 1741630 107608848 161410965 4602893 14905 64 1
...
Column k = 1 is
A068413 (shifted once to the right).
-
Table[Length[Select[IntegerPartitions[2^n],Mean[#]==2^k&]],{n,0,5},{k,0,n}]
-
from sympy.utilities.iterables import partitions
from sympy import npartitions
def A327483_T(n,k):
if k == 0 or k == n: return 1
if k == n-1: return 1<Chai Wah Wu, Sep 21 2023
-
# uses A008284_T
def A327483_T(n,k): return A008284_T(1<Chai Wah Wu, Sep 21 2023
A363745
Number of integer partitions of n whose rounded-down mean is 2.
Original entry on oeis.org
0, 0, 1, 0, 2, 2, 3, 4, 10, 6, 16, 21, 24, 32, 58, 47, 85, 111, 119, 158, 248, 217, 341, 442, 461, 596, 867, 792, 1151, 1465, 1506, 1916, 2652, 2477, 3423, 4298, 4381, 5488, 7334, 6956, 9280, 11503, 11663, 14429, 18781, 17992, 23383, 28675, 28970, 35449, 45203
Offset: 0
The a(2) = 1 through a(10) = 16 partitions:
(2) . (22) (32) (222) (322) (332) (3222) (3322)
(31) (41) (321) (331) (422) (3321) (3331)
(411) (421) (431) (4221) (4222)
(511) (521) (4311) (4321)
(611) (5211) (4411)
(2222) (6111) (5221)
(3221) (5311)
(3311) (6211)
(4211) (7111)
(5111) (22222)
(32221)
(33211)
(42211)
(43111)
(52111)
(61111)
These partitions have ranks
A363954.
Cf.
A000041,
A002865,
A027336,
A237984,
A241131,
A327472,
A327482,
A363723,
A363943,
A363944,
A363946.
-
Table[Length[Select[IntegerPartitions[n],Floor[Mean[#]]==2&]],{n,0,30}]
A327484
Number of integer partitions of 2^n whose mean is a power of 2.
Original entry on oeis.org
1, 2, 4, 11, 66, 1417, 178803, 275379307, 15254411521973, 108800468645440803267, 964567296140908420613296779144, 219614169629364529542990295052656098001967511, 38626966436500261962963100479469496821891576834974275502742922521
Offset: 0
The a(0) = 1 through a(3) = 11 partitions:
(1) (2) (4) (8)
(11) (22) (44)
(31) (53)
(1111) (62)
(71)
(2222)
(3221)
(3311)
(4211)
(5111)
(11111111)
-
Table[Length[Select[IntegerPartitions[2^n],IntegerQ[Mean[#]]&]],{n,0,5}]
-
from sympy.utilities.iterables import partitions
def A327484(n): return sum(1 for s,p in partitions(1<Chai Wah Wu, Sep 21 2023
-
# uses A008284_T
def A327484(n): return sum(A008284_T(1<Chai Wah Wu, Sep 21 2023
A360669
Nonprime numbers > 1 for which the prime indices have the same mean as their first differences.
Original entry on oeis.org
10, 39, 68, 115, 138, 259, 310, 328, 387, 517, 574, 636, 793, 795, 1034, 1168, 1206, 1241, 1281, 1340, 1534, 1691, 1825, 2212, 2278, 2328, 2343, 2369, 2370, 2727, 2774, 2905, 3081, 3277, 3818, 3924, 4064, 4074, 4247, 4268, 4360, 4539, 4850, 4905, 5243, 5335
Offset: 1
The terms together with their prime indices begin:
1: {}
10: {1,3}
39: {2,6}
68: {1,1,7}
115: {3,9}
138: {1,2,9}
259: {4,12}
310: {1,3,11}
328: {1,1,1,13}
387: {2,2,14}
517: {5,15}
574: {1,4,13}
636: {1,1,2,16}
For example, the prime indices of 138 are {1,2,9}, with mean 4, and with first differences (1,7), with mean also 4, so 138 is in the sequence.
These partitions are counted by
A360670.
A301987 lists numbers whose sum of prime indices equals their product.
A316413 lists numbers whose prime indices have integer mean.
A334201 adds up all prime indices except the greatest.
A360614/
A360615 = mean of first differences of 0-prepended prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,1000],Mean[prix[#]]==Mean[Differences[prix[#]]]&]
A361655
Number of even-length integer partitions of 2n with integer mean.
Original entry on oeis.org
0, 1, 3, 4, 10, 6, 33, 8, 65, 68, 117, 12, 583, 14, 319, 1078, 1416, 18, 3341, 20, 8035, 5799, 1657, 24, 36708, 16954, 3496, 24553, 68528, 30, 192180, 32, 178802, 91561, 14625, 485598, 955142, 38, 29223, 316085, 2622697, 42, 3528870, 44, 2443527, 5740043
Offset: 0
The a(0) = 0 through a(5) = 6 partitions:
. (11) (22) (33) (44) (55)
(31) (42) (53) (64)
(1111) (51) (62) (73)
(111111) (71) (82)
(2222) (91)
(3221) (1111111111)
(3311)
(4211)
(5111)
(11111111)
For example, the partition (4,2,1,1) has length 4 and mean 2, so is counted under a(4).
Including odd-length partitions gives
A067538 bisected, ranks
A316413.
For median instead of mean we have
A361653.
The odd-length version is counted by
A361656.
A326622 counts factorizations with integer mean.
-
Table[Length[Select[IntegerPartitions[2n], EvenQ[Length[#]]&&IntegerQ[Mean[#]]&]],{n,0,15}]
-
a(n)=if(n==0, 0, sumdiv(n, d, polcoef(1/prod(k=1, 2*d, 1 - x^k + O(x*x^(2*(n-d)))), 2*(n-d)))) \\ Andrew Howroyd, Mar 24 2023
A363132
Number of integer partitions of 2n such that 2*(minimum) = (mean).
Original entry on oeis.org
0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0
The a(2) = 1 through a(7) = 14 partitions:
(31) (321) (62) (32221) (93) (3222221)
(411) (3221) (33211) (552) (3322211)
(3311) (42211) (642) (3332111)
(4211) (43111) (732) (4222211)
(5111) (52111) (822) (4322111)
(61111) (322221) (4331111)
(332211) (4421111)
(333111) (5222111)
(422211) (5321111)
(432111) (5411111)
(441111) (6221111)
(522111) (6311111)
(531111) (7211111)
(621111) (8111111)
(711111)
Removing the factor 2 gives
A099777.
Taking maximum instead of mean and including odd indices gives
A118096.
For length instead of mean and including odd indices we have
A237757.
For median instead of mean we have
A361861.
These partitions have ranks
A363133.
For maximum instead of minimum we have
A363218.
For median instead of minimum we have
A363224.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
-
Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
-
from sympy.utilities.iterables import partitions
def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023
A363134
Positive integers whose multiset of prime indices satisfies: (length) = 2*(minimum).
Original entry on oeis.org
4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 81, 82, 86, 94, 106, 118, 122, 134, 135, 142, 146, 158, 166, 178, 189, 194, 202, 206, 214, 218, 225, 226, 254, 262, 274, 278, 297, 298, 302, 314, 315, 326, 334, 346, 351, 358, 362, 375, 382, 386, 394, 398, 422, 441
Offset: 1
The terms together with their prime indices begin:
4: {1,1} 94: {1,15} 214: {1,28}
6: {1,2} 106: {1,16} 218: {1,29}
10: {1,3} 118: {1,17} 225: {2,2,3,3}
14: {1,4} 122: {1,18} 226: {1,30}
22: {1,5} 134: {1,19} 254: {1,31}
26: {1,6} 135: {2,2,2,3} 262: {1,32}
34: {1,7} 142: {1,20} 274: {1,33}
38: {1,8} 146: {1,21} 278: {1,34}
46: {1,9} 158: {1,22} 297: {2,2,2,5}
58: {1,10} 166: {1,23} 298: {1,35}
62: {1,11} 178: {1,24} 302: {1,36}
74: {1,12} 189: {2,2,2,4} 314: {1,37}
81: {2,2,2,2} 194: {1,25} 315: {2,2,3,4}
82: {1,13} 202: {1,26} 326: {1,38}
86: {1,14} 206: {1,27} 334: {1,39}
Partitions of this type are counted by
A237757.
Removing the factor 2 gives
A324522.
A360005 gives twice median of prime indices.
Cf.
A000961,
A006141,
A046660,
A051293,
A106529,
A111907,
A237755,
A237824,
A327482,
A361860,
A361861,
A362050.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[prix[#]]==2*Min[prix[#]]&]
Comments