cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A333769 Irregular triangle read by rows where row k is the sequence of run-lengths of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 10 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The standard compositions and their run-lengths:
   0:        () -> ()
   1:       (1) -> (1)
   2:       (2) -> (1)
   3:     (1,1) -> (2)
   4:       (3) -> (1)
   5:     (2,1) -> (1,1)
   6:     (1,2) -> (1,1)
   7:   (1,1,1) -> (3)
   8:       (4) -> (1)
   9:     (3,1) -> (1,1)
  10:     (2,2) -> (2)
  11:   (2,1,1) -> (1,2)
  12:     (1,3) -> (1,1)
  13:   (1,2,1) -> (1,1,1)
  14:   (1,1,2) -> (2,1)
  15: (1,1,1,1) -> (4)
  16:       (5) -> (1)
  17:     (4,1) -> (1,1)
  18:     (3,2) -> (1,1)
  19:   (3,1,1) -> (1,2)
For example, the 119th composition is (1,1,2,1,1,1), so row 119 is (2,1,3).
		

Crossrefs

Row sums are A000120.
Row lengths are A124767.
Row k is the A333627(k)-th standard composition.
A triangle counting compositions by runs-resistance is A329744.
All of the following pertain to compositions in standard order (A066099):
- Partial sums from the right are A048793.
- Sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Strict compositions are A233564.
- Partial sums from the left are A272020.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Heinz number is A333219.
- Runs-resistance is A333628.
- First appearances of run-resistances are A333629.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length/@Split[stc[n]],{n,0,30}]

A332292 Number of widely alternately strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2020

Keywords

Comments

An integer partition is widely alternately strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) which, if reversed, are themselves a widely alternately strongly normal partition.
Also the number of widely alternately co-strongly normal reversed integer partitions of n.

Examples

			The a(1) = 1, a(3) = 2, and a(21) = 3 partitions:
  (1)  (21)   (654321)
       (111)  (4443321)
              (111111111111111111111)
For example, starting with the partition y = (4,4,4,3,3,2,1) and repeatedly taking run-lengths and reversing gives (4,4,4,3,3,2,1) -> (1,1,2,3) -> (1,1,2) -> (1,2) -> (1,1). All of these are normal with weakly decreasing run-lengths, and the last is all 1's, so y is counted under a(21).
		

Crossrefs

Normal partitions are A000009.
The non-strong version is A332277.
The co-strong version is A332289.
The case of reversed partitions is (also) A332289.
The case of compositions is A332340.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],GreaterEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]

Extensions

a(71)-a(77) from Jinyuan Wang, Jun 26 2020

A332277 Number of widely totally normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 4, 4, 6, 3, 5, 7, 6, 8, 12, 9, 12, 13, 11, 12, 18, 17, 12, 32, 19, 25, 33, 30, 28, 44, 33, 43, 57, 51, 60, 83, 70, 83, 103, 96, 97, 125, 117, 134, 157, 157, 171, 226, 215, 238, 278, 302, 312, 359, 357, 396, 450, 444, 477, 580
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
Also the number of widely totally normal reversed integer partitions of n.

Examples

			The a(n) partitions for n = 1, 4, 10, 11, 16, 18:
  1  211   4321        33221        443221            543321
     1111  33211       322211       4432111           4333221
           322111      332111       1111111111111111  4432221
           1111111111  11111111111                    4433211
                                                      43322211
                                                      44322111
                                                      111111111111111111
		

Crossrefs

Normal partitions are A000009.
Taking multiplicities instead of run-lengths gives A317245.
Constantly recursively normal partitions are A332272.
The Heinz numbers of these partitions are A332276.
The case of all compositions (not just partitions) is A332279.
The co-strong version is A332278.
The recursive version is A332295.
The narrow version is a(n) + 1 for n > 1.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]

Extensions

a(61)-a(66) from Jinyuan Wang, Jun 26 2020

A332291 Heinz numbers of widely totally strongly normal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 30, 32, 64, 128, 210, 256, 450, 512, 1024, 2048, 2250, 2310, 4096, 8192, 16384, 30030, 32768, 65536, 131072, 262144, 510510, 524288
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2020

Keywords

Comments

An integer partition is widely totally strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) which are themselves a widely totally strongly normal partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is closed under A304660, so there are infinitely many terms that are not powers of 2 or primorial numbers.

Examples

			The sequence of all widely totally strongly normal integer partitions together with their Heinz numbers begins:
      1: ()
      2: (1)
      4: (1,1)
      6: (2,1)
      8: (1,1,1)
     16: (1,1,1,1)
     18: (2,2,1)
     30: (3,2,1)
     32: (1,1,1,1,1)
     64: (1,1,1,1,1,1)
    128: (1,1,1,1,1,1,1)
    210: (4,3,2,1)
    256: (1,1,1,1,1,1,1,1)
    450: (3,3,2,2,1)
    512: (1,1,1,1,1,1,1,1,1)
   1024: (1,1,1,1,1,1,1,1,1,1)
   2048: (1,1,1,1,1,1,1,1,1,1,1)
   2250: (3,3,3,2,2,1)
   2310: (5,4,3,2,1)
   4096: (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

Closed under A304660.
The non-strong version is A332276.
The co-strong version is A332293.
The case of reversed partitions is (also) A332293.
Heinz numbers of normal partitions with decreasing run-lengths are A025487.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],GreaterEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Select[Range[10000],totnQ[Reverse[primeMS[#]]]&]

A332276 Heinz numbers of widely totally normal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 630, 1024, 1050, 1350, 1500, 2048, 2100, 2250, 2310, 2520, 2940, 3150, 3780, 4096, 4200, 4410, 5880, 8192, 8820, 9450, 10500, 11550, 12600, 13230, 14700
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

First differs from A317246 in having 630.
A sequence of positive integers is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
   90: {1,2,2,3}
  128: {1,1,1,1,1,1,1}
  150: {1,2,3,3}
  180: {1,1,2,2,3}
  210: {1,2,3,4}
  256: {1,1,1,1,1,1,1,1}
  300: {1,1,2,3,3}
  360: {1,1,1,2,2,3}
For example, starting with (4,3,2,2,1), the partition with Heinz number 630, and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1). These are all normal and the last is all 1's, so 630 belongs to the sequence.
		

Crossrefs

Contains all powers of two A000079 and the primorials A002110.
Heinz numbers of normal integer partitions are A055932.
The case of reversed integer partitions is A332276 (this sequence).
The enumeration of these partitions by sum is A332277.
The enumeration of the generalization to compositions is A332279.
The co-strong version is A332290.
The strong version is A332291.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    gnaQ[y_]:=Or[y=={},Union[y]=={1},And[Union[y]==Range[Max[y]],gnaQ[Length/@Split[y]]]];
    Select[Range[1000],gnaQ[primeMS[#]]&]

A332290 Heinz numbers of widely alternately co-strongly normal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 30, 32, 60, 64, 128, 210, 256, 360, 512, 1024, 2048, 2310, 2520, 4096, 8192, 16384, 30030, 32768, 65536, 75600, 131072, 262144, 510510, 524288
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2020

Keywords

Comments

An integer partition is widely alternately co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly increasing run-lengths (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is closed under A181821, so there are infinitely many terms that are not powers of 2 or primorial numbers.

Examples

			The sequence of all widely alternately co-strongly normal integer partitions together with their Heinz numbers begins:
      1: ()
      2: (1)
      4: (1,1)
      6: (2,1)
      8: (1,1,1)
     12: (2,1,1)
     16: (1,1,1,1)
     30: (3,2,1)
     32: (1,1,1,1,1)
     60: (3,2,1,1)
     64: (1,1,1,1,1,1)
    128: (1,1,1,1,1,1,1)
    210: (4,3,2,1)
    256: (1,1,1,1,1,1,1,1)
    360: (3,2,2,1,1,1)
    512: (1,1,1,1,1,1,1,1,1)
   1024: (1,1,1,1,1,1,1,1,1,1)
   2048: (1,1,1,1,1,1,1,1,1,1,1)
   2310: (5,4,3,2,1)
   2520: (4,3,2,2,1,1,1)
For example, starting with y = (4,3,2,2,1,1,1), which has Heinz number 2520, and repeatedly taking run-lengths and reversing gives (4,3,2,2,1,1,1) -> (3,2,1,1) -> (2,1,1) -> (2,1) -> (1,1). These are all normal with weakly increasing run-lengths and the last is all 1's, so 2520 belongs to the sequence.
		

Crossrefs

Closed under A181821.
The non-co-strong version is A332276.
The enumeration of these partitions by sum is A332289.
The total (rather than alternating) version is A332293.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Select[Range[10000],totnQ[Reverse[primeMS[#]]]&]

A332295 Number of widely recursively normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 34, 48, 54, 74, 86, 113, 132, 169, 200, 246, 293, 360, 422, 512, 599, 726, 840, 1009, 1181, 1401, 1631, 1940, 2240, 2636, 3069, 3567, 4141, 4846, 5556, 6470, 7505, 8627, 9936, 11523, 13176, 15151, 17430, 19935, 22846
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2020

Keywords

Comments

A sequence is widely recursively normal if either it is all 1's (wide) or its run-lengths cover an initial interval of positive integers (normal) and are themselves a widely recursively normal sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (31)    (32)     (42)      (43)       (53)
             (111)  (211)   (41)     (51)      (52)       (62)
                    (1111)  (221)    (321)     (61)       (71)
                            (311)    (411)     (322)      (332)
                            (11111)  (111111)  (331)      (422)
                                               (421)      (431)
                                               (511)      (521)
                                               (3211)     (611)
                                               (1111111)  (3221)
                                                          (4211)
                                                          (11111111)
For example, starting with y = (4,3,2,2,1) and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1), all of which have normal run-lengths, so y is widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (4,3,2,2,1) -> (2,1,1,1) -> (3,1), so y is not fully normal (A317491).
Starting with y = (5,4,3,3,2,2,2,1,1) and repeatedly taking run-lengths gives (5,4,3,3,2,2,2,1,1) -> (1,1,2,3,2) -> (2,1,1,1) -> (1,3), so y is not widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (5,4,3,3,2,2,2,1,1) -> (3,2,2,1,1) -> (2,2,1) -> (2,1) -> (1,1), so y is fully normal (A317491).
		

Crossrefs

The narrow version is A000012.
Partitions with normal multiplicities are A317081.
The Heinz numbers of these partitions are a proper superset of A317492.
Accepting any constant sequence instead of just 1's gives A332272.
The total (instead of recursive) version is A332277.
The case of reversed partitions is this same sequence.
The alternating (instead of recursive) version is this same sequence.
Dominated by A332576.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]

A329750 Triangle read by rows where T(n,k) is the number of compositions of n >= 1 with runs-resistance n - k, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 6, 6, 1, 1, 0, 4, 9, 15, 3, 1, 0, 2, 16, 22, 22, 1, 1, 0, 0, 8, 37, 38, 41, 3, 1, 0, 0, 0, 26, 86, 69, 72, 2, 1, 0, 0, 0, 2, 78, 175, 124, 129, 3, 1, 0, 0, 0, 0, 14, 202, 367, 226, 213, 1, 1, 0, 0, 0, 0, 0, 52, 469, 750, 376, 395, 5, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			Triangle begins:
   1
   1   1
   2   1   1
   2   3   2   1
   2   6   6   1   1
   0   4   9  15   3   1
   0   2  16  22  22   1   1
   0   0   8  37  38  41   3   1
   0   0   0  26  86  69  72   2   1
   0   0   0   2  78 175 124 129   3   1
   0   0   0   0  14 202 367 226 213   1   1
   0   0   0   0   0  52 469 750 376 395   5   1
Row n = 6 counts the following compositions:
  (1,1,3,1)    (1,1,4)      (1,5)      (3,3)          (6)
  (1,3,1,1)    (4,1,1)      (2,4)      (2,2,2)
  (1,1,1,2,1)  (1,1,1,3)    (4,2)      (1,1,1,1,1,1)
  (1,2,1,1,1)  (1,2,2,1)    (5,1)
               (2,1,1,2)    (1,2,3)
               (3,1,1,1)    (1,3,2)
               (1,1,1,1,2)  (1,4,1)
               (1,1,2,1,1)  (2,1,3)
               (2,1,1,1,1)  (2,3,1)
                            (3,1,2)
                            (3,2,1)
                            (1,1,2,2)
                            (1,2,1,2)
                            (2,1,2,1)
                            (2,2,1,1)
		

Crossrefs

Row sums are A000079.
Column sums are A329768.
The version with rows reversed is A329744.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-k&]],{n,10},{k,n}]

A332293 Heinz numbers of widely totally co-strongly normal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 30, 32, 64, 128, 180, 210, 256, 360, 512, 1024, 2048, 2310, 4096, 8192, 16384, 30030, 32768, 65536, 75600, 131072, 262144, 510510, 524288
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2020

Keywords

Comments

An integer partition is widely totally co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly increasing run-lengths (co-strong) which are themselves a widely totally co-strongly normal partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     6: {1,2}
     8: {1,1,1}
    12: {1,1,2}
    16: {1,1,1,1}
    30: {1,2,3}
    32: {1,1,1,1,1}
    64: {1,1,1,1,1,1}
   128: {1,1,1,1,1,1,1}
   180: {1,1,2,2,3}
   210: {1,2,3,4}
   256: {1,1,1,1,1,1,1,1}
   360: {1,1,1,2,2,3}
   512: {1,1,1,1,1,1,1,1,1}
  1024: {1,1,1,1,1,1,1,1,1,1}
  2048: {1,1,1,1,1,1,1,1,1,1,1}
  2310: {1,2,3,4,5}
  4096: {1,1,1,1,1,1,1,1,1,1,1,1}
  8192: {1,1,1,1,1,1,1,1,1,1,1,1,1}
For example, 180 is the Heinz number of (3,2,2,1,1), with run-lengths (3,2,2,1,1) -> (1,2,2) -> (1,2) -> (1,1). These are all normal with weakly increasing multiplicities and the last is all 1's, so 180 belongs to the sequence.
		

Crossrefs

A subset of A055932.
Closed under A181819.
The non-co-strong version is A332276.
The enumeration of these partitions by sum is A332278.
The alternating version is A332290.
The strong version is A332291.
The case of reversed partitions is (also) A332291.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    gnaQ[y_]:=Or[y=={},Union[y]=={1},And[normQ[y],LessEqual@@Length/@Split[y],gnaQ[Length/@Split[y]]]];
    Select[Range[1000],gnaQ[Reverse[primeMS[#]]]&]

A333629 Least k such that the runs-resistance of the k-th composition in standard order is n.

Original entry on oeis.org

1, 3, 5, 11, 27, 93, 859, 13789, 1530805, 1567323995
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.
For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined as the number of applications required to reach a singleton.

Examples

			The sequence together with the corresponding compositions begins:
        1: (1)
        3: (1,1)
        5: (2,1)
       11: (2,1,1)
       27: (1,2,1,1)
       93: (2,1,1,2,1)
      859: (1,2,2,1,2,1,1)
    13789: (1,2,2,1,1,2,1,1,2,1)
  1530805: (2,1,1,2,2,1,2,1,1,2,1,2,2,1)
For example, starting with 13789 and repeatedly applying A333627 gives: 13789 -> 859 -> 110 -> 29 -> 11 -> 6 -> 3 -> 2, corresponding to the compositions: (1,2,2,1,1,2,1,1,2,1) -> (1,2,2,1,2,1,1) -> (1,2,1,1,2) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2).
		

Crossrefs

Positions of first appearances in A333628 = number of times applying A333627 to reach a power of 2, starting with n.
A subsequence of A333630.
All of the following pertain to compositions in standard order (A066099):
- The length is A000120.
- The partial sums from the right are A048793.
- The sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Equal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- The partial sums from the left are A272020.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.

Programs

  • Mathematica
    nn=1000;
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcrun[n_]:=Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2;
    seq=Table[Length[NestWhileList[stcrun,n,Length[stc[#]]>1&]]-1,{n,nn}];
    Table[Position[seq,i][[1,1]],{i,Union[seq]}]

Extensions

a(9) from Amiram Eldar, Aug 04 2025
Previous Showing 11-20 of 27 results. Next