cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A330594 Decimal expansion of Product_{primes p} (1 + 1/p^2 - 2/p^3).

Original entry on oeis.org

1, 1, 0, 6, 9, 6, 0, 1, 1, 1, 9, 5, 3, 2, 1, 7, 6, 7, 6, 6, 5, 1, 1, 7, 9, 1, 3, 0, 0, 0, 7, 4, 3, 9, 5, 9, 2, 9, 4, 9, 5, 4, 8, 8, 3, 3, 6, 5, 8, 1, 2, 2, 4, 1, 9, 0, 4, 3, 1, 3, 4, 0, 4, 4, 9, 7, 8, 7, 7, 7, 3, 3, 2, 4, 1, 2, 3, 7, 3, 7, 0, 7, 8, 0, 4, 4, 4, 9, 8, 5, 6, 5, 9, 5, 9, 1, 2, 5, 3, 7, 2, 4, 9, 1, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 19 2019

Keywords

Examples

			1.106960111953217676651179130007439592949548833658122419043134044978777...
		

Crossrefs

Programs

  • Mathematica
    Do[Print[N[Exp[-Sum[q = Expand[(-p^2 + 2*p^3)^j]; Sum[PrimeZetaP[Exponent[q[[k]], p]] * Coefficient[q[[k]], p^Exponent[q[[k]], p]], {k, 1, Length[q]}]/j, {j, 1, t}]], 110]], {t, 20, 200, 20}]
  • PARI
    prodeulerrat(1 + 1/p^2 - 2/p^3) \\ Amiram Eldar, Mar 16 2021

A056551 Smallest cube divisible by n divided by largest cube which divides n.

Original entry on oeis.org

1, 8, 27, 8, 125, 216, 343, 1, 27, 1000, 1331, 216, 2197, 2744, 3375, 8, 4913, 216, 6859, 1000, 9261, 10648, 12167, 27, 125, 17576, 1, 2744, 24389, 27000, 29791, 8, 35937, 39304, 42875, 216, 50653, 54872, 59319, 125, 68921, 74088, 79507, 10648
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(16) = 8 since smallest cube divisible by 16 is 64 and smallest cube which divides 16 is 8 and 64/8 = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[Divisible[e, 3], 0, 1]; a[n_] := (Times @@ (f @@@ FactorInteger[ n]))^3; Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%3, f[i,1], 1))^3; } \\ Amiram Eldar, Oct 28 2022

Formula

a(n) = A053149(n)/A008834(n) = A048798(n)*A050985(n) = A056552(n)^3.
From Amiram Eldar, Oct 28 2022: (Start)
Multiplicative with a(p^e) = 1 if e is divisible by 3, and a(p^e) = p^3 otherwise.
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(12)/(4*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A013670 * A330596 / (4*A002117) = 0.1557163105... . (End)
Dirichlet g.f.: zeta(3*s) * Product_{p prime} (1 + 1/p^(s-3) + 1/p^(2*s-3)). - Amiram Eldar, Sep 16 2023

A134193 a(1) = 1; for n>1, a(n) = the smallest positive integer not occurring among the exponents in the prime-factorization of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Leroy Quet, Jan 13 2008

Keywords

Comments

From Amiram Eldar, Jun 30 2025: (Start)
The first position of k = 1, 2, 3, ... is A006939(k-1).
Let d(k) be the asymptotic density of the occurrences of k = 1, 2, ... in this sequence.
d(1) = 0 = the density of the powerful numbers (A001694).
d(2) = Product_{primes p} (1 - 1/p^2 + 1/p^3) = 0.748535... (A330596) = the density of A337050.
d(3) = Product_{primes p} (1 - 1/p^3 + 1/p^4) - Product_{primes p} (1 - 1/p^2 + 1/p^4) = 0.23548870893364493209...
d(4) = Product_{primes p} (1 - 1/p^4 + 1/p^5) - Product_{primes p} (1 - 1/p^3 + 1/p^5) - Product_{primes p} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5) + Product_{primes p} (1 - 1/p^2 + 1/p^5) = 0.01580134256336122613... .
d(5) = 0.000174471282..., d(6) = 0.000000217516..., etc.
In general, d(k) = Sum_{s subset of {2, 3, ..., k-1}} (-1)^card(s) * Product_{p prime} (1 -Sum_{i=1..card(s)} 1/p^s(i) + 1/p^(s(i)+1) - 1/p^k + 1/p^(k+1)).
The asymptotic mean of this sequence is Sum_{k>=1} k*d(k) = 2.26761567808299143335... . (End)

Examples

			The prime factorization of 24 is 2^3 * 3^1. The exponents are 3 and 1. Therefore a(24) = 2 is the smallest positive integer not occurring among (3,1).
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Complement[Range[n], Table[FactorInteger[n][[i, 2]], {i, 1, Length[FactorInteger[n]]}]][[1]], {n, 2, 120}]] (* Stefan Steinerberger, Jan 21 2008 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n)); ve = vecsort(f[,2],,8); k = 1; while(vecsearch(ve, k), k++); k;); \\ Michel Marcus, Jul 28 2017
  • Scheme
    (define (A134193 n) (A257993 (A181819 n))) ;; Antti Karttunen, Jul 28 2017
    

Formula

a(n) = A257993(A181819(n)). - Antti Karttunen, Jul 28 2017

Extensions

More terms from Stefan Steinerberger, Jan 21 2008

A336652 Sum of positive divisors of odd part of n that are divisible by every (odd) prime dividing it: a(n) = A057723(A000265(n)).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 12, 5, 11, 3, 13, 7, 15, 1, 17, 12, 19, 5, 21, 11, 23, 3, 30, 13, 39, 7, 29, 15, 31, 1, 33, 17, 35, 12, 37, 19, 39, 5, 41, 21, 43, 11, 60, 23, 47, 3, 56, 30, 51, 13, 53, 39, 55, 7, 57, 29, 59, 15, 61, 31, 84, 1, 65, 33, 67, 17, 69, 35, 71, 12, 73, 37, 90, 19, 77, 39, 79, 5, 120, 41, 83, 21, 85, 43
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(e+1) - 1)/(p-1) - 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 07 2020 *)
  • PARI
    A336652(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,if(2==f[i,1],1,-1+(((f[i,1]^(1+f[i,2]))-1) / (f[i,1]-1)))));

Formula

Multiplicative with a(2^e) = 1, and for odd primes p, a(p^e) = (p + p^2 + ... + p^e) = sigma(p^e)-1.
a(n) = A057723(A000265(n)).
a(n) = A204455(n) * A336649(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/21) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = (Pi^2/21) * A330596 = 0.3517974711... . - Amiram Eldar, Nov 12 2022

A372636 a(n) = Sum_{j=1..n} Sum_{k=1..n} phi(j*k) / phi(k).

Original entry on oeis.org

1, 5, 14, 31, 58, 93, 148, 219, 306, 407, 550, 695, 898, 1103, 1323, 1610, 1963, 2293, 2738, 3152, 3597, 4116, 4773, 5362, 6073, 6808, 7611, 8437, 9492, 10348, 11557, 12728, 13868, 15143, 16425, 17753, 19482, 21083, 22687, 24350, 26481, 28186, 30535, 32641
Offset: 1

Views

Author

Seiichi Manyama, May 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[EulerPhi[j*k], {j, 1, n}] / EulerPhi[k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, May 08 2024 *)
    s = 1; Join[{1}, Table[s += Sum[EulerPhi[j*n] / EulerPhi[j], {j, 1, n}] + Sum[EulerPhi[j*n], {j, 1, n-1}] / EulerPhi[n], {n, 2, 50}]] (* Vaclav Kotesovec, May 08 2024 *)
  • PARI
    a(n) = sum(j=1, n, sum(k=1, n, eulerphi(j*k)/eulerphi(k)));

Formula

a(n) ~ c * n^3, where c = A330596 / 2 = 0.374267629841... . - Amiram Eldar, May 09 2024

A366763 The number of divisors of n that have no exponent 2 in their prime factorization.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 6, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2023

Keywords

Comments

The number of terms of A337050 that divide n.
The sum of these divisors is A366764(n), and the largest of them is A366765(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Max[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> max(x, 2), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = max(e, 2);
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
a(n) >= A034444(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)).
From Vaclav Kotesovec, Apr 20 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 + 1/p^3) = A330596 = 0.74853525968236356464421504863791060164164034300532440451585279392592558689...,
f'(1) = f(1) * Sum_{p prime} (2*p-3)*log(p)/(p^3-p+1) = f(1) * 0.560697508735949606541137451100554649565120075155278833396722097786365686597...
and gamma is the Euler-Mascheroni constant A001620. (End)

A380325 The sum of the square roots of the squares that divide the n-th exponentially odd number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^((e+1)/2) - 1)/(p - 1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 200], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]^((f[i, 2]+1)/2) - 1)/(f[i, 1] - 1), 0));}
    list(lim) = select(x -> x > 0, vector(lim, i, s(i)));

Formula

a(n) = A069290(A268335(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * A330596 / d = 1.74789521005721521109..., where d = A065463 is the asymptotic density of the exponentially odd numbers.

A159253 a(n) is the smallest positive integer not yet in the sequence such that n * a(n) is a cube.

Original entry on oeis.org

1, 4, 9, 2, 25, 36, 49, 8, 3, 100, 121, 18, 169, 196, 225, 32, 289, 12, 361, 50, 441, 484, 529, 72, 5, 676, 27, 98, 841, 900, 961, 16, 1089, 1156, 1225, 6, 1369, 1444, 1521, 200, 1681, 1764, 1849, 242, 75, 2116, 2209, 288, 7, 20, 2601, 338, 2809, 108, 3025, 392
Offset: 1

Views

Author

Keywords

Comments

This is a self-inverse permutation of the positive integers.

Crossrefs

Cf. A064429 (function on exponents)

Programs

  • Mathematica
    f[p_, e_] := If[(r = Mod[e, 3]) == 0, p^e, p^(e - (-1)^r)]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n) = {my(f = factor(n), r); prod(i = 1, #f~, r=f[i,2]%3; f[i,1]^if(r == 0, f[i,2], f[i,2]-(-1)^r));} \\ Amiram Eldar, Dec 01 2022

Formula

Multiplicative with a(p^(3*n)) = p^(3*n), a(p^(3*n+1)) = p^(3*n+2), and a(p^(3*n+2)) = p^(3*n+1).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*zeta(3))) * Product_{p prime} (1 - 1/p^2 + 1/p^3) = A347328 * A330596 / 3 = 0.2111705... . - Amiram Eldar, Dec 01 2022

A375847 The maximum exponent in the prime factorization of the largest unitary cubefree divisor of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Aug 31 2024

Keywords

Crossrefs

Cf. A007424 (analogous with the largest cubefree divisor, for n >= 2).

Programs

  • Mathematica
    a[n_] := Max[Join[{0}, Select[FactorInteger[n][[;; , 2]], # <= 2 &]]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = {my(e = select(x -> x <= 2, factor(n)[,2])); if(#e == 0, 0, vecmax(e));}

Formula

a(n) = A051903(A360539(n)).
a(n) = 0 if and only if n is cubefull (A036966).
a(n) = 1 if and only if n is in A337050 \ A036966.
a(n) = 2 if and only if n is in A038109.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 - A330596 = 1.25146474031763643535... .
Previous Showing 11-19 of 19 results.