cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A252849 Numbers with an even number of square divisors.

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 84, 88, 90, 92, 98, 99, 100, 104, 108, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 144, 147, 148
Offset: 1

Views

Author

Walker Dewey Anderson, Mar 22 2015

Keywords

Comments

Closed lockers in the locker problem where the student numbers are the set of perfect squares.
The locker problem is a classic mathematical problem. Imagine a row containing an infinite number of lockers numbered from one to infinity. Also imagine an infinite number of students numbered from one to infinity. All of the lockers begin closed. The first student opens every locker that is a multiple of one, which is every locker. The second student closes every locker that is a multiple of two, so all of the even-numbered lockers are closed. The third student opens or closes every locker that is a multiple of three. This process continues for all of the students.
A variant on the locker problem is when not all student numbers are considered; in the case of this sequence, only the square-numbered students open and close lockers. The sequence here is a list of the closed lockers after all of the students have gone.
From Amiram Eldar, Jul 07 2020: (Start)
Numbers k such that the largest square dividing k (A008833) is not a fourth power.
The asymptotic density of this sequence is 1 - Pi^2/15 = 1 - A182448 = 0.342026... (Cesàro, 1885). (End)
Closed under application of A331590: for n, k >= 1, A331590(a(n), k) is in the sequence. - Peter Munn, Sep 18 2020

Crossrefs

Complement of A252895.
A046951, A335324 are used in a formula defining this sequence.
Disjoint union of A336593 and A336594.
A030140, A038109, A082293, A217319 are subsequences.
Ordered 3rd trisection of A225546.

Programs

Formula

From Peter Munn, Sep 18 2020: (Start)
Numbers k such that A046951(k) mod 2 = 0.
Numbers k such that A335324(k) > 1.
(End)

A332821 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 1 (mod 3).

Original entry on oeis.org

2, 5, 9, 11, 12, 16, 17, 21, 23, 28, 30, 31, 39, 40, 41, 47, 49, 52, 54, 57, 59, 66, 67, 70, 72, 73, 75, 76, 83, 87, 88, 91, 96, 97, 100, 102, 103, 109, 111, 116, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 148, 149, 154, 157, 159, 165, 167, 168, 169, 172, 175, 179, 180, 183, 184, 186, 190, 191, 197, 203, 211, 212
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, this sequence and A332822.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332822. This sequence has the primes with odd indexes, those in A031368.
The terms are the even numbers in A332822 halved. The terms are also the numbers m such that 5m is in A332822, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332820, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332820, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332822, which consists exactly of those numbers. For larger primes, an alternating pattern applies as described in the previous paragraph.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting number is in A332822, which consists entirely of those numbers.
The product of any 2 terms of this sequence is in A332822, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332822, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of ones in A332823; equivalently, numbers in row 3k+1 of A277905 for some k >= 0.
Subsequences: intersection of A026478 and A066208, A031368 (prime terms), A033431\{0}, A052934\{1}, A069486, A099800, A167747\{1}, A244725\{0}, A244728\{0}, A338911 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 212, Mod[Total@ #, 3] == 1 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332821(n) =  { my(f = factor(n)); (1==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332820(k) : k >= 1} U {A003961(A332822(k)) : k >= 1}.
{a(n) : n >= 1} = {A332822(k)^2 : k >= 1} U {A331590(2, A332820(k)) : k >= 1}.

A332822 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 2 (mod 3).

Original entry on oeis.org

3, 4, 7, 10, 13, 18, 19, 22, 24, 25, 29, 32, 34, 37, 42, 43, 45, 46, 53, 55, 56, 60, 61, 62, 71, 78, 79, 80, 81, 82, 85, 89, 94, 98, 99, 101, 104, 105, 107, 108, 113, 114, 115, 118, 121, 131, 132, 134, 139, 140, 144, 146, 150, 151, 152, 153, 155, 163, 166, 173, 174, 176, 181, 182, 187, 189, 192, 193, 194, 195, 199, 200, 204
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, A332821 and this sequence.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332821. This sequence has the primes with even indexes, those in A031215.
The terms are the even numbers in A332820 halved. The terms are also the numbers m such that 5m is in A332820, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332821, and so on for alternate primes: 7, 13, 19, 29 etc.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, we get the same set of numbers as we get from halving the even terms of this sequence, and A332821 consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332820, which consists exactly of those numbers. The numbers that are one fifth of the terms that are multiples of 5 constitute A332821, and for larger primes, an alternating pattern applies as described in the previous paragraph.
The product of any 2 terms of this sequence is in A332821, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332821, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of terms valued -1 in A332823; equivalently, numbers in row 3k-1 of A277905 for some k >= 1.
Subsequences: intersection of A026478 and A066207, A031215 (prime terms), A033430\{0}, A117642\{0}, A169604, A244727\{0}, A244729\{0}, A338910 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 204, Mod[Total@ #, 3] == 2 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332822(n) =  { my(f = factor(n)); (2==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332821(k) : k >= 1} U {A003961(A332821(k)) : k >= 1}.
{a(n) : n >= 1} = {A332821(k)^2 : k >= 1} U {A331590(2, A332821(k)) : k >= 1}.

A334110 The squares of squarefree numbers (A062503), ordered lexicographically according to their prime factors. a(n) = Product_{k in I} prime(k+1)^2, where I are the indices of nonzero binary digits in n = Sum_{k in I} 2^k.

Original entry on oeis.org

1, 4, 9, 36, 25, 100, 225, 900, 49, 196, 441, 1764, 1225, 4900, 11025, 44100, 121, 484, 1089, 4356, 3025, 12100, 27225, 108900, 5929, 23716, 53361, 213444, 148225, 592900, 1334025, 5336100, 169, 676, 1521, 6084, 4225, 16900, 38025, 152100, 8281, 33124, 74529, 298116, 207025, 828100, 1863225, 7452900, 20449, 81796, 184041
Offset: 0

Views

Author

Antti Karttunen and Peter Munn, May 01 2020

Keywords

Comments

For the lexicographic ordering, the prime factors must be written in nonincreasing order. If we write the factors in nondecreasing order, we get a lexicographically ordered set with an order type that is greater than a natural number index - the resulting sequence does not include all qualifying numbers. (Note also that the symbols used for the lexicographic order are the prime numbers, not their digits.)
a(n) is the n-th power of 4 in the monoid defined in A331590.
Conjecture: a(n) is the position of the first occurrence of n in A334109.

Examples

			The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic ordering. The list starts with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
    1 = .
    4 = 2*2.
    9 = 3*3.
   36 = 3*3*2*2.
   25 = 5*5.
  100 = 5*5*2*2.
  225 = 5*5*3*3.
  900 = 5*5*3*3*2*2.
   49 = 7*7.
  196 = 7*7*2*2.
  441 = 7*7*3*3.
		

Crossrefs

Cf. A000079, A019565 (square roots), A048675, A097248, A225546, A267116, A332382, A334109 (a left inverse).
Column 2 of A329332. Permutation of A062503.
After 1, the right children of the leftmost edge of A334860, or respectively, the left children of the rightmost edge of A334866.
Subsequences: A001248, A061742, A166329.
Subsequence of A052330.
A003961, A003987, A059897, A331590 are used to express relationship between terms of this sequence.

Programs

  • Mathematica
    Array[If[# == 0, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[3^#]]] &, 51, 0] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A334110(n) = { my(p=2,m=1); while(n, if(n%2, m *= p^2); n >>= 1; p = nextprime(1+p)); (m); };

Formula

a(n) = A019565(n)^2.
For n >= 1, a(A000079(n-1)) = A001248(n).
For all n >= 0, A334109(a(n)) = n.
a(n+k) = A331590(a(n), a(k)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
a(n) = A225546(3^n).
a(2n) = A003961(a(n)).
a(2n+1) = 4 * a(2n).
a(2^k-1) = A061742(k).
A267116(a(n)) = 2.
A048675(a(n)) = 2n.
A097248(a(n)) = A332382(n) = A019565(2n).

A340675 Exponential of Mangoldt function conjugated by Tek's flip: a(n) = A225546(A014963(A225546(n))).

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 16, 2, 1, 2, 1, 2, 2, 2, 1, 4, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 16, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 4, 2, 2, 2, 1, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 01 2021

Keywords

Comments

Nonunit squarefree numbers take the value 2, other nonsquares take the value 1, and squares take the square of the value taken by their square root.

Crossrefs

Sequences used in a definition of this sequence: A014963, A048298, A225546, A267116, A297108, A340676.
Positions of 1's: {1} U A340681, 2's: A005117 \ {1}, of 4's: A062503 \ {1}, of 16's: A113849.
Positions of terms > 1: A340682, of terms > 2: A340674.
Sequences used to express relationship between terms of this sequence: A003961, A331590.

Programs

  • PARI
    A340675(n) = if(1==n,n,if(issquarefree(n), 2, if(!issquare(n), 1, A340675(sqrtint(n))^2)));

Formula

a(n) = 2^A048298(A267116(n)).
If A340673(n) = 1, then a(n) = 1, otherwise a(n) = 2^A297108(A340673(n)).
If A340676(n) = 0, then a(n) = 1, otherwise a(n) = 2^(2^(A340676(n)-1)).
If n = s^(2^k), s squarefree >= 2, k >= 0, then a(n) = 2^(2^k), otherwise a(n) = 1.
For n, k > 1, if a(n) = a(k) then a(A331590(n, k)) = a(n), otherwise a(A331590(n, k)) = 1.
a(n^2) = a(n)^2.
a(A003961(n)) = a(n).
a(A051144(n)) = 1.
a(n) = 1 if and only if A331591(n) <> 1, otherwise a(n) = 2^A051903(n).

A334109 a(n) = A329697(A225546(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 4, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 8, 4, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 4, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 8, 2, 5, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2020

Keywords

Comments

Conjecture: Each k >= 0 occurs for the first time at A334110(k) = A019565(k)^2. Note that each k must occur first time on square n, because of the identity a(n) = a(A008833(n)). However, is there any reason to exclude squares with prime exponents > 2 from the candidates? See also comments in A334204.

Crossrefs

Programs

  • Mathematica
    Map[-1 + Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] &, Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 105] ] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A334109(n) = { my(f=factor(n),pis=apply(primepi,f[,1]),es=f[,2]); sum(k=1,#f~,(2^(pis[k]-1))*A329697(A019565(es[k]))); };

Formula

Additive with a(prime(i)^j) = A000079(i-1) * A329697(A019565(j)), a(m*n) = a(m)+a(n) if gcd(m,n) = 1.
Alternatively, additive with a(prime(i)^(2^k)) = 2^(i-1) * A329697(prime(k+1)), a(m*n) = a(m)+a(n) if A059895(m,n) = 1. - Peter Munn, May 04 2020
a(n) = A329697(A225546(n)) = A329697(A331736(n)).
a(n) = a(A008833(n)).
For all n >= 0, a(A334110(n)) = n, a(A334860(n)) = A334204(n).
a(A331590(m,k)) = a(m) + a(k); a(A003961(n)) = 2*a(n). - Peter Munn, Apr 30 2020

A335324 Square part of 4th-power-free part of n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Peter Munn, May 31 2020

Keywords

Comments

Equivalently, biquadratefree (4th-power-free) part of square part of n.
Multiplicative. The terms are squares of squarefree numbers (A062503).
Every positive integer n is the product of a unique subset S_n of the terms of A050376 (sometimes called Fermi-Dirac primes). a(n) is the product of the members of S_n that are squares of prime numbers (A001248).

Examples

			Removing the 4th powers from 192 = 2^6 * 3^1 gives 2^(6 - 4) * 3^1 = 2^2 * 3 = 12. So the 4th-power-free part of 192 is 12. The square part of 12 (largest square dividing 12) is 4. So a(192) = 4.
		

Crossrefs

A007913, A008833, A008835, A053165 are used in formulas defining the sequence.
Column 1 of A352780.
Range of values is A062503.
Positions of 1's: A252895.
Related to A038500 by A225546.
The formula section details how the sequence maps the terms of A003961, A331590.

Programs

  • Mathematica
    f[p_, e_] := p^(2*Floor[e/2] - 4*Floor[e/4]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 01 2020 *)
  • PARI
    A053165(n)=my(f=factor(n)); f[, 2]=f[, 2]%4; factorback(f);
    a(n) = my(m=A053165(n)); m/core(m); \\ Michel Marcus, Jun 01 2020
    
  • Python
    from math import prod
    from sympy import factorint
    def A335324(n): return prod(p**(e&2) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 07 2024

Formula

a(n) = A053165(A008833(n)) = A008833(A053165(n)).
a(n) = A053165(n) / A007913(n).
a(n) = A008833(n) / A008835(n).
n = A007913(n) * a(n) * A008835(n).
a(n) = A225546(A038500(A225546(n))).
a(n^2) = A007913(n)^2.
a(A003961(n)) = A003961(a(n)).
a(A331590(n, k)) = A331590(a(n), a(k)).
a(p^e) = p^(2*floor(e/2) - 4*floor(e/4)). - Amiram Eldar, Jun 01 2020
From Amiram Eldar, Sep 21 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(4*s)/(zeta(2*s) * zeta(4*s-4)).
Sum_{k=1..n} a(k) ~ (4*zeta(3/2)*zeta(4))/(21*zeta(3)) * n^(3/2). (End)

A336322 a(n) = A225546(A122111(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 16, 9, 12, 10, 32, 15, 24, 18, 256, 30, 64, 7, 48, 27, 20, 14, 512, 36, 40, 81, 96, 21, 128, 42, 65536, 54, 60, 72, 1024, 35, 120, 45, 768, 70, 192, 105, 80, 162, 28, 210, 131072, 25, 144, 90, 160, 11, 4096, 108, 1536, 135, 56, 22, 2048, 33, 84, 243, 4294967296, 216, 384, 66, 240, 270, 288, 55, 262144, 110, 168, 324, 480, 50
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Jul 17 2020

Keywords

Comments

A225546 and A122111 are both self-inverse permutations of the positive integers based on prime factorizations, and they share further common properties. For instance, they map the prime numbers to powers of 2: A225546 maps the k-th prime to 2^2^(k-1), whereas A122111 maps it to 2^k.
In composing these permutations, this sequence maps the list of prime numbers to the squarefree numbers, as listed in A019565; and the "normal" numbers (A055932), as listed in A057335, to ascending powers of 2.

Crossrefs

A225546 composed with A122111.
Sorted even bisection: A335738.
Sorted odd bisection (excluding 1): A335740.
Sequences used to express relationship between terms of this sequence: A001222, A003961, A253560, A331590, A350066.
Sequences of sequences (S_1, S_2, ... S_j) with the property a(S_i) = S_{i+1}, or essentially so: (A033844, A000040, A019565), (A057335, A000079, A001146), (A000244, A011764), (A001248, A334110), (A253563, A334866).
The inverse permutation, A336321, lists sequences where the property is weaker (between the sets of terms).

Formula

a(A033844(m)) = A000040(m+1). [Offset corrected Peter Munn, Feb 14 2022]
a(A000040(m)) = A019565(m).
a(A057335(m)) = 2^m.
For m >= 1, a(2^m) = A001146(m-1).
a(A253563(m)) = A334866(m).
From Peter Munn, Feb 14 2022: (Start)
a(A253560(n)) = a(n)^2.
For n >= 2, a(A003961(n)) = A331590(a(n), 2^2^(A001222(n)-1)).
a(A350066(n, k)) = A331590(a(n), a(k)).
(End)

A331740 Number of prime factors in A225546(n), counted with multiplicity.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 2, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 4, 4, 33, 4, 9, 512, 7, 1024, 2, 18, 65, 12, 3, 2048, 129, 34, 6, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 5, 20, 10, 130, 513, 65536, 7, 131072, 1025, 10, 2, 36, 19, 262144, 65, 258, 13, 524288, 4, 1048576, 2049, 6
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Crossrefs

Cf. also A331309, A331591.
Positions of 1's: A001146.

Programs

  • Mathematica
    Array[If[# == 1, 0, PrimeOmega@ Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 75] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    A331740(n) = if(1==n,0,my(f=factor(n)); sum(i=1,#f~,hammingweight(f[i,2])*(2^(primepi(f[i,1])-1))));

Formula

Additive with a(p^e) = A000120(e) * 2^(PrimePi(p)-1), where PrimePi(n) = A000720(n).
a(n) = A001222(A225546(n)).
A331591(n) <= a(n) <= A048675(n).
From Peter Munn, Sep 11 2021: (Start)
a(A001146(m)) = 1.
a(A331590(m, k)) = a(m) + a(k).
For squarefree k, a(k*m^2) = a(k) + a(m) = A048675(k) + a(m).
(End)

A334748 Let p be the smallest odd prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller odd primes.

Original entry on oeis.org

3, 6, 5, 12, 15, 10, 21, 24, 27, 30, 33, 20, 39, 42, 7, 48, 51, 54, 57, 60, 35, 66, 69, 40, 75, 78, 45, 84, 87, 14, 93, 96, 55, 102, 105, 108, 111, 114, 65, 120, 123, 70, 129, 132, 135, 138, 141, 80, 147, 150, 85, 156, 159, 90, 165, 168, 95, 174, 177, 28, 183, 186, 189
Offset: 1

Views

Author

Peter Munn, May 09 2020

Keywords

Comments

A permutation of A028983.
A007417 (which has asymptotic density 3/4) lists index n such that a(n) = 3n. The sequence maps the terms of A007417 1:1 onto A145204\{0}, defining a bijection between them.
Similarly, bijections are defined from the odd numbers (A005408) to the nonsquare odd numbers (A088828), from the positive even numbers (A299174) to A088829, from A003159 to the nonsquares in A003159, and from A325424 to the nonsquares in A036668. The latter two bijections are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.

Examples

			84 = 21*4 has squarefree part 21 (and square part 4). The smallest odd prime absent from 21 = 3*7 is 5 and the product of all smaller odd primes is 3. So a(84) = 84*5/3 = 140.
		

Crossrefs

Permutation of A028983.
Row 3, and therefore column 3, of A331590. Cf. A334747 (row 2).
A007913, A034386, A225546, A284723 are used in formulas defining the sequence.
The formula section details how the sequence maps the terms of A003961, A019565, A070826; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
Subsequences: A016051, A145204\{0}, A329575.
Bijections are defined that relate to A003159, A005408, A007417, A036668, A088828, A088829, A299174, A325424.

Programs

  • PARI
    a(n) = {my(c=core(n), m=n); forprime(p=3, , if(c % p, m*=p; break, m/=p)); m;} \\ Michel Marcus, May 22 2020

Formula

a(n) = n * p / (A034386(p-1)/2), where p = A284723(A007913(n)).
a(n) = A334747(A334747(n)).
a(n) = A331590(3, n) = A225546(4 * A225546(n)).
a(2*n) = 2 * a(n).
a(A019565(n)) = A019565(n+2).
a(k * m^2) = a(k) * m^2.
a(A003961(n)) = A003961(A334747(n)).
a(A070826(n)) = prime(n+1).
A048675(a(n)) = A048675(n) + 2.
A008833(a(n)) = A008833(n).
A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
a(A007417(n)) = A145204(n+1) = 3 * A007417(n).
Previous Showing 11-20 of 22 results. Next