A332190
a(n) = 10^(2n+1) - 1 - 9*10^n.
Original entry on oeis.org
0, 909, 99099, 9990999, 999909999, 99999099999, 9999990999999, 999999909999999, 99999999099999999, 9999999990999999999, 999999999909999999999, 99999999999099999999999, 9999999999990999999999999, 999999999999909999999999999, 99999999999999099999999999999, 9999999999999990999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332120 ..
A332180 (variants with different repeated digit 2, ..., 8).
-
A332190 := n -> 10^(2*n+1)-1-9*10^n;
-
Array[10^(2 # + 1)-1-9*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{0,909,99099},20] (* Harvey P. Dale, May 28 2021 *)
-
apply( {A332190(n)=10^(n*2+1)-1-9*10^n}, [0..15])
-
def A332190(n): return 10**(n*2+1)-1-9*10^n
A332121
a(n) = 2*(10^(2n+1)-1)/9 - 10^n.
Original entry on oeis.org
1, 212, 22122, 2221222, 222212222, 22222122222, 2222221222222, 222222212222222, 22222222122222222, 2222222221222222222, 222222222212222222222, 22222222222122222222222, 2222222222221222222222222, 222222222222212222222222222, 22222222222222122222222222222, 2222222222222221222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
Cf.
A332131 ..
A332191 (variants with different repeated digit 3, ..., 9).
-
A332121 := n -> 2*(10^(2*n+1)-1)/9-10^n;
-
Array[2 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
-
apply( {A332121(n)=10^(n*2+1)\9*2-10^n}, [0..15])
-
def A332121(n): return 10**(n*2+1)//9*2-10**n
A332129
a(n) = 2*(10^(2n+1)-1)/9 + 7*10^n.
Original entry on oeis.org
9, 292, 22922, 2229222, 222292222, 22222922222, 2222229222222, 222222292222222, 22222222922222222, 2222222229222222222, 222222222292222222222, 22222222222922222222222, 2222222222229222222222222, 222222222222292222222222222, 22222222222222922222222222222, 2222222222222229222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332119 ..
A332189 (variants with different repeated digit 1, ..., 8).
Cf.
A332120 ..
A332128 (variants with different middle digit 0, ..., 8).
-
A332129 := n -> 2*(10^(2*n+1)-1)/9+7*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 7*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{9,292,22922},20] (* Harvey P. Dale, Jun 25 2020 *)
-
apply( {A332129(n)=10^(n*2+1)\9*2+7*10^n}, [0..15])
-
def A332129(n): return 10**(n*2+1)//9*2+7*10**n
A332180
a(n) = 8*(10^(2n+1)-1)/9 - 8*10^n.
Original entry on oeis.org
0, 808, 88088, 8880888, 888808888, 88888088888, 8888880888888, 888888808888888, 88888888088888888, 8888888880888888888, 888888888808888888888, 88888888888088888888888, 8888888888880888888888888, 888888888888808888888888888, 88888888888888088888888888888, 8888888888888880888888888888888
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332181 ..
A332189 (variants with different middle digit 1, ..., 9).
Subsequence of
A006072 (numbers with mirror symmetry about middle),
A153806 (strobogrammatic cyclops numbers), and
A204095 (numbers whose decimal digits are in {0,8}).
-
A332180 := n -> 8*((10^(2*n+1)-1)/9-10^n);
-
Array[8 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332180(n)=(10^(n*2+1)\9-10^n)*8}, [0..15])
-
def A332180(n): return (10**(n*2+1)//9-10**n)*8
A332130
a(n) = (10^(2n+1)-1)/3 - 3*10^n.
Original entry on oeis.org
0, 303, 33033, 3330333, 333303333, 33333033333, 3333330333333, 333333303333333, 33333333033333333, 3333333330333333333, 333333333303333333333, 33333333333033333333333, 3333333333330333333333333, 333333333333303333333333333, 33333333333333033333333333333, 3333333333333330333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332131 ..
A332139 (variants with different middle digit 1, ..., 9).
-
A332130 := n -> (10^(2*n+1)-1)/3-3*10^n;
-
Array[ ((10^(2 # + 1)-1)/3 - 3*10^#) &, 15, 0]
-
apply( {A332130(n)=10^(n*2+1)\3-3*10^n}, [0..15])
-
def A332130(n): return 10**(n*2+1)//3-3*10**n
A332140
a(n) = 4*(10^(2n+1)-1)/9 - 4*10^n.
Original entry on oeis.org
0, 404, 44044, 4440444, 444404444, 44444044444, 4444440444444, 444444404444444, 44444444044444444, 4444444440444444444, 444444444404444444444, 44444444444044444444444, 4444444444440444444444444, 444444444444404444444444444, 44444444444444044444444444444, 4444444444444440444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332141 ..
A332149 (variants with different middle digit 1, ..., 9).
-
A332140 := n -> 4*((10^(2*n+1)-1)/9-10^n);
-
Array[4 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
LinearRecurrence[{111,-1110,1000},{0,404,44044},20] (* Harvey P. Dale, Jul 06 2021 *)
-
apply( {A332140(n)=(10^(n*2+1)\9-10^n)*4}, [0..15])
-
def A332140(n): return (10**(n*2+1)//9-10**n)*4
A332150
a(n) = 5*(10^(2n+1)-1)/9 - 5*10^n.
Original entry on oeis.org
0, 505, 55055, 5550555, 555505555, 55555055555, 5555550555555, 555555505555555, 55555555055555555, 5555555550555555555, 555555555505555555555, 55555555555055555555555, 5555555555550555555555555, 555555555555505555555555555, 55555555555555055555555555555, 5555555555555550555555555555555
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332151 ..
A332159 (variants with different middle digit 1, ..., 9).
-
A332150 := n -> 5*((10^(2*n+1)-1)/9-10^n);
-
Array[5 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
Table[With[{c=PadRight[{},n,5]},FromDigits[Join[c,{0},c]]],{n,0,15}] (* or *) LinearRecurrence[{111,-1110,1000},{0,505,55055},20] (* Harvey P. Dale, Jun 30 2025 *)
-
apply( {A332150(n)=(10^(n*2+1)\9-10^n)*5}, [0..15])
-
def A332150(n): return (10**(n*2+1)//9-10**n)*5
A332160
a(n) = 6*(10^(2n+1)-1)/9 - 6*10^n.
Original entry on oeis.org
0, 606, 66066, 6660666, 666606666, 66666066666, 6666660666666, 666666606666666, 66666666066666666, 6666666660666666666, 666666666606666666666, 66666666666066666666666, 6666666666660666666666666, 666666666666606666666666666, 66666666666666066666666666666, 6666666666666660666666666666666
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332161 ..
A332169 (variants with different middle digit 1, ..., 9).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
-
A332160 := n -> 6*((10^(2*n+1)-1)/9-10^n);
-
Array[6 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332160(n)=(10^(n*2+1)\9-10^n)*6}, [0..15])
-
def A332160(n): return (10**(n*2+1)//9-10**n)*6
A332123
a(n) = 2*(10^(2n+1)-1)/9 + 10^n.
Original entry on oeis.org
3, 232, 22322, 2223222, 222232222, 22222322222, 2222223222222, 222222232222222, 22222222322222222, 2222222223222222222, 222222222232222222222, 22222222222322222222222, 2222222222223222222222222, 222222222222232222222222222, 22222222222222322222222222222, 2222222222222223222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332123 := n -> 2*(10^(2*n+1)-1)/9+10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332123(n)=10^(n*2+1)\9*2+10^n}, [0..15])
-
def A332123(n): return 10**(n*2+1)//9*2+10**n
A332124
a(n) = 2*(10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
4, 242, 22422, 2224222, 222242222, 22222422222, 2222224222222, 222222242222222, 22222222422222222, 2222222224222222222, 222222222242222222222, 22222222222422222222222, 2222222222224222222222222, 222222222222242222222222222, 22222222222222422222222222222, 2222222222222224222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332114 ..
A332194 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332124 := n -> 2*((10^(2*n+1)-1)/9+10^n);
-
Array[2 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{4},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{4,242,22422},20](* Harvey P. Dale, Mar 06 2023 *)
-
apply( {A332124(n)=(10^(n*2+1)\9+10^n)*2}, [0..15])
-
def A332124(n): return (10**(n*2+1)//9+10**n)*2
Showing 1-10 of 15 results.