cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A342424 a(n) = Sum_{k=1..n} gcd(k,n)^(n/gcd(k,n)).

Original entry on oeis.org

1, 3, 5, 10, 9, 33, 13, 60, 69, 167, 21, 470, 25, 837, 1245, 1624, 33, 5067, 37, 9570, 13841, 20633, 45, 54612, 12545, 98511, 119601, 201646, 57, 562957, 61, 794928, 1774185, 2097491, 536037, 5381754, 73, 9437601, 19136333, 14296940
Offset: 1

Views

Author

Seiichi Manyama, Mar 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^(n/GCD[k, n]), {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Mar 11 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^(n/gcd(k, n)));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^(n/d));

Formula

a(n) = Sum_{d|n} phi(n/d) * d^(n/d).

A342449 a(n) = Sum_{k=1..n} gcd(k,n)^k.

Original entry on oeis.org

1, 5, 29, 262, 3129, 46705, 823549, 16777544, 387421251, 10000003469, 285311670621, 8916100581446, 302875106592265, 11112006826387025, 437893890391180013, 18446744073743123788, 827240261886336764193, 39346408075299116257065
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^k, {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^k);

Formula

If p is prime, a(p) = p-1 + p^p = A231712(p).

A342539 a(n) = Sum_{k=1..n} phi(gcd(k, n))^n.

Original entry on oeis.org

1, 2, 10, 19, 1028, 132, 279942, 65798, 10078726, 2097160, 100000000010, 16797702, 106993205379084, 156728328204, 35186519703560, 281479271809036, 295147905179352825872, 203119914385420, 708235345355337676357650, 1152924803145924620, 46005163783270994804748, 20000000000000000000020
Offset: 1

Views

Author

Seiichi Manyama, Mar 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^n &]; Array[a, 20] (* Amiram Eldar, Mar 15 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(gcd(k, n))^n);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^n);

Formula

a(n) = Sum_{d|n} phi(n/d) * phi(d)^n.
If p is prime, a(p) = p-1 + (p-1)^p.
a(n) = Sum_{k=1..n} phi(n/gcd(n,k))^(n-1)*phi(gcd(n,k)). - Richard L. Ollerton, May 09 2021

A321294 a(n) = Sum_{d|n} mu(n/d)*d*sigma_n(d).

Original entry on oeis.org

1, 9, 83, 1058, 15629, 282381, 5764807, 134480900, 3486902505, 100048836321, 3138428376731, 107006403495850, 3937376385699301, 155572843119518781, 6568408661060858767, 295150157013526773768, 14063084452067724991025, 708236697425777157039381
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[n/d] d DivisorSigma[n, d], {d, Divisors[n]}], {n, 18}]
    Table[Sum[EulerPhi[n/d] d^(n + 1), {d, Divisors[n]}], {n, 18}]
    Table[Sum[GCD[n, k]^(n + 1), {k, n}], {n, 18}]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, n)); \\ Michel Marcus, Nov 03 2018
    
  • Python
    from sympy import totient, divisors
    def A321294(n):
        return sum(totient(d)*(n//d)**(n+1) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020

Formula

a(n) = [x^n] Sum_{i>=1} Sum_{j>=1} mu(i)*j^(n+1)*x^(i*j)/(1 - x^(i*j))^2.
a(n) = Sum_{d|n} phi(n/d)*d^(n+1).
a(n) = Sum_{k=1..n} gcd(n,k)^(n+1).
a(n) ~ n^(n+1). - Vaclav Kotesovec, Nov 02 2018

A332655 a(n) = Sum_{k=1..n} (k/gcd(n, k))^n.

Original entry on oeis.org

1, 2, 10, 84, 1301, 15693, 376762, 6168552, 176787631, 3770427352, 142364319626, 3152758480715, 154718778284149, 4340093860950619, 210971170836848270, 7281694486114555088, 435659030617933827137, 14181121059071691716406, 1052864393300587929716722, 41673907052879908244100770
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k div Gcd(n,k))^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[(k/GCD[n, k])^n, {k, 1, n}], {n, 1, 20}]
    Table[Sum[Sum[If[GCD[k, d] == 1, k^n, 0], {k, 1, d}], {d, Divisors[n]}], {n, 1, 20}]

Formula

a(n) = Sum_{k=1..n} (lcm(n, k)/n)^n.
a(n) = Sum_{d|n} Sum_{k=1..d, gcd(k, d) = 1} k^n.
Previous Showing 11-15 of 15 results.