cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A332641 Number of integer partitions of n whose run-lengths are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 9, 14, 22, 33, 48, 69, 96, 136, 184, 248, 330, 443, 574, 756, 970, 1252, 1595, 2040, 2558, 3236, 4041, 5054, 6256, 7781, 9547, 11782, 14394, 17614, 21423, 26083, 31501, 38158, 45930, 55299, 66262, 79477, 94803, 113214
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2020

Keywords

Comments

Also partitions whose run-lengths and negated run-lengths are not both unimodal. A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 1 through a(13) = 14 partitions:
  (3221)  (4221)  (5221)   (4331)    (4332)     (5332)
                  (32221)  (6221)    (5331)     (6331)
                  (33211)  (42221)   (7221)     (8221)
                           (322211)  (43221)    (43321)
                           (332111)  (44211)    (44311)
                                     (52221)    (53221)
                                     (322221)   (62221)
                                     (422211)   (332221)
                                     (3321111)  (333211)
                                                (422221)
                                                (442111)
                                                (522211)
                                                (3222211)
                                                (33211111)
		

Crossrefs

The complement is counted by A332745.
The Heinz numbers of these partitions are A332831.
The case of run-lengths of compositions is A332833.
Partitions whose run-lengths are weakly increasing are A100883.
Partitions whose run-lengths are weakly decreasing are A100882.
Partitions whose run-lengths are not unimodal are A332281.
Partitions whose negated run-lengths are not unimodal are A332639.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Partitions with unimodal run-lengths are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Compositions whose negation is not unimodal are A332669.
The case of run-lengths of compositions is A332833.
Compositions that are neither increasing nor decreasing are A332834.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,30}]

A332579 Number of integer partitions of n covering an initial interval of positive integers with non-unimodal run-lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 7, 8, 10, 14, 19, 22, 30, 36, 43, 56, 69, 80, 101, 121, 141, 172, 202, 234, 282, 332, 384, 452, 527, 602, 706, 815, 929, 1077, 1236, 1403, 1615, 1842, 2082, 2379, 2702, 3044, 3458, 3908, 4388, 4963, 5589, 6252
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also the number of strict integer partitions of n whose negated first differences (assuming the last part is zero) are not unimodal.

Examples

			The a(10) = 1 through a(16) = 7 partitions:
  33211  332111  3321111  333211    433211     443211      443221
                          33211111  3332111    4332111     3333211
                                    332111111  33321111    4432111
                                               3321111111  33322111
                                                           43321111
                                                           333211111
                                                           33211111111
		

Crossrefs

The complement is counted by A332577.
Not requiring the partition to cover an initial interval gives A332281.
The opposite version is A332286.
A version for compositions is A332743.
Partitions covering an initial interval of positive integers are A000009.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
Compositions whose negated run-lengths are not unimodal are A332727.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!unimodQ[Length/@Split[#]]&]],{n,0,30}]

A332746 Number of integer partitions of n such that either the run-lengths or the negated run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 134, 174, 227, 291, 373, 473, 598, 748, 936, 1163, 1437, 1771, 2170, 2651, 3226, 3916, 4727, 5702, 6846, 8205, 9793, 11681, 13866, 16462, 19452, 22976, 27041, 31820, 37276, 43693, 51023, 59559, 69309, 80664
Offset: 0

Views

Author

Gus Wiseman, Feb 27 2020

Keywords

Comments

First differs from A000041 at a(14) = 134, A000041(14) = 135.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The only partition not counted under a(14) = 134 is (4,3,3,2,1,1), whose run-lengths (1,2,1,2) are neither unimodal nor is their negation.
		

Crossrefs

Looking only at the original run-lengths gives A332281.
Looking only at the negated run-lengths gives A332639.
The complement is counted by A332640.
The Heinz numbers of partitions not in this class are A332643.
Unimodal compositions are A001523.
Partitions with unimodal run-lengths are A332280.
Compositions whose negation is unimodal are A332578.
Partitions whose negated run-lengths are unimodal are A332638.
Run-lengths are neither weakly increasing nor weakly decreasing: A332641.
Run-lengths and negated run-lengths are both unimodal: A332745.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]||unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A332643 Neither the unsorted prime signature of a(n) nor the negated unsorted prime signature of a(n) is unimodal.

Original entry on oeis.org

2100, 3300, 3900, 4200, 4410, 5100, 5700, 6468, 6600, 6900, 7644, 7800, 8400, 8700, 9300, 9996, 10200, 10500, 10780, 10890, 11100, 11172, 11400, 12300, 12740, 12900, 12936, 13200, 13230, 13524, 13800, 14100, 15210, 15246, 15288, 15600, 15900, 16500, 16660
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.

Examples

			The sequence of terms together with their prime indices begins:
   2100: {1,1,2,3,3,4}
   3300: {1,1,2,3,3,5}
   3900: {1,1,2,3,3,6}
   4200: {1,1,1,2,3,3,4}
   4410: {1,2,2,3,4,4}
   5100: {1,1,2,3,3,7}
   5700: {1,1,2,3,3,8}
   6468: {1,1,2,4,4,5}
   6600: {1,1,1,2,3,3,5}
   6900: {1,1,2,3,3,9}
   7644: {1,1,2,4,4,6}
   7800: {1,1,1,2,3,3,6}
   8400: {1,1,1,1,2,3,3,4}
   8700: {1,1,2,3,3,10}
   9300: {1,1,2,3,3,11}
   9996: {1,1,2,4,4,7}
  10200: {1,1,1,2,3,3,7}
  10500: {1,1,2,3,3,3,4}
  10780: {1,1,3,4,4,5}
  10890: {1,2,2,3,5,5}
		

Crossrefs

Not requiring non-unimodal negation gives A332282.
These are the Heinz numbers of the partitions counted by A332640.
Not requiring non-unimodality gives A332642.
The case of compositions is A332870.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unsorted prime signature is A124010.
Non-unimodal normal sequences are A328509.
Partitions whose 0-appended first differences are unimodal are A332283, with Heinz numbers the complement of A332287.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Partitions whose 0-appended first differences are not unimodal are A332744, with Heinz numbers A332832.
Numbers whose signature is neither increasing nor decreasing are A332831.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Select[Range[10000],!unimodQ[Last/@FactorInteger[#]]&&!unimodQ[-Last/@FactorInteger[#]]&]

Formula

Intersection of A332282 and A332642.

A332874 Number of strict compositions of n that are neither unimodal nor is their negation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 10, 20, 30, 50, 150, 180, 290, 420, 630, 860, 1828, 2168, 3326, 4514, 6530, 8576, 12188, 20096, 25314, 35576, 48062, 65592, 86752, 117222, 152060, 237590, 292346, 402798, 524596, 711270, 910606, 1221204, 1554382, 2044460, 2927124
Offset: 0

Views

Author

Gus Wiseman, Mar 04 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n. It is strict if there are not repeated parts.

Examples

			The a(10) = 10 through a(12) = 20 compositions:
  (1,3,2,4)  (1,3,2,5)  (1,3,2,6)
  (1,4,2,3)  (1,5,2,3)  (1,4,2,5)
  (2,1,4,3)  (2,1,5,3)  (1,5,2,4)
  (2,3,1,4)  (2,3,1,5)  (1,6,2,3)
  (2,4,1,3)  (2,5,1,3)  (2,1,5,4)
  (3,1,4,2)  (3,1,5,2)  (2,1,6,3)
  (3,2,4,1)  (3,2,5,1)  (2,3,1,6)
  (3,4,1,2)  (3,5,1,2)  (2,4,1,5)
  (4,1,3,2)  (5,1,3,2)  (2,5,1,4)
  (4,2,3,1)  (5,2,3,1)  (2,6,1,3)
                        (3,1,6,2)
                        (3,2,6,1)
                        (3,6,1,2)
                        (4,1,5,2)
                        (4,2,5,1)
                        (4,5,1,2)
                        (5,1,4,2)
                        (5,2,4,1)
                        (6,1,3,2)
                        (6,2,3,1)
		

Crossrefs

The non-strict version for unsorted prime signature is A332643.
The non-strict version is A332870.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Compositions whose negation is unimodal are A332578.
Compositions whose negation is not unimodal are A332669.
Compositions with neither weakly increasing nor weakly decreasing run-lengths are A332833.
Compositions with weakly increasing or weakly decreasing run-lengths are A332835.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!unimodQ[#]&&!unimodQ[-#]&]],{n,0,20}]
  • PARI
    seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=4, n, (k! - 2^k + 2)*polcoef(p,k,y)), -(n+1))} \\ Andrew Howroyd, Apr 16 2021

Formula

G.f.: Sum_{k>=4} (k! - 2^k + 2) * [y^k](Product_{j>=1} 1 + y*x^j). - Andrew Howroyd, Apr 16 2021

Extensions

Terms a(21) and beyond from Andrew Howroyd, Apr 16 2021

A332873 Number of non-unimodal, non-co-unimodal sequences of length n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 22, 340, 3954, 44716, 536858, 7056252, 102140970, 1622267196, 28090317226, 526854073564, 10641328363722, 230283141084220, 5315654511587498, 130370766447282204, 3385534661270087178, 92801587312544823804, 2677687796221222845802, 81124824998424994578652
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negative is unimodal.

Examples

			The a(4) = 22 sequences:
  (1,2,1,2)  (2,3,1,3)
  (1,2,1,3)  (2,3,1,4)
  (1,3,1,2)  (2,4,1,3)
  (1,3,2,3)  (3,1,2,1)
  (1,3,2,4)  (3,1,3,2)
  (1,4,2,3)  (3,1,4,2)
  (2,1,2,1)  (3,2,3,1)
  (2,1,3,1)  (3,2,4,1)
  (2,1,3,2)  (3,4,1,2)
  (2,1,4,3)  (4,1,3,2)
  (2,3,1,2)  (4,2,3,1)
		

Crossrefs

Not requiring non-co-unimodality gives A328509.
Not requiring non-unimodality also gives A328509.
The version for run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
The version for compositions is A332870.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Numbers whose negated prime signature is not unimodal are A332642.
Compositions whose run-lengths are not unimodal are A332727.
Non-unimodal compositions covering an initial interval are A332743.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,5}]
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 6*x + 12*x^2 - 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) + A000225(n) - 2*A007052(n-1) for n > 0. - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024
Previous Showing 11-16 of 16 results.