0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 2, 4, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 2, 2, 0, 0, 1, 3, 0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 2, 2, 2, 2, 3, 5, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 1, 2, 1, 3, 0, 0, 1, 1, 1, 1, 2, 4, 0, 0, 0, 1, 1, 0, 0, 2, 0
Offset: 0
A345167
Numbers k such that the k-th composition in standard order is alternating.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 16, 17, 18, 20, 22, 24, 25, 32, 33, 34, 38, 40, 41, 44, 45, 48, 49, 50, 54, 64, 65, 66, 68, 70, 72, 76, 77, 80, 81, 82, 88, 89, 96, 97, 98, 102, 108, 109, 128, 129, 130, 132, 134, 140, 141, 144, 145, 148, 152, 153, 160, 161, 162
Offset: 1
The terms together with their binary indices begin:
1: (1) 25: (1,3,1) 66: (5,2)
2: (2) 32: (6) 68: (4,3)
4: (3) 33: (5,1) 70: (4,1,2)
5: (2,1) 34: (4,2) 72: (3,4)
6: (1,2) 38: (3,1,2) 76: (3,1,3)
8: (4) 40: (2,4) 77: (3,1,2,1)
9: (3,1) 41: (2,3,1) 80: (2,5)
12: (1,3) 44: (2,1,3) 81: (2,4,1)
13: (1,2,1) 45: (2,1,2,1) 82: (2,3,2)
16: (5) 48: (1,5) 88: (2,1,4)
17: (4,1) 49: (1,4,1) 89: (2,1,3,1)
18: (3,2) 50: (1,3,2) 96: (1,6)
20: (2,3) 54: (1,2,1,2) 97: (1,5,1)
22: (2,1,2) 64: (7) 98: (1,4,2)
24: (1,4) 65: (6,1) 102: (1,3,1,2)
Partitions with a permutation of this type:
A345170, complement
A345165.
Factorizations with a permutation of this type:
A348379.
A003242 counts anti-run compositions.
A345164 counts alternating permutations of prime indices.
Statistics of standard compositions:
- Number of maximal anti-runs is
A333381.
- Number of distinct parts is
A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are
A114994.
- Weakly increasing compositions (multisets) are
A225620.
- Non-alternating anti-runs are
A345169.
Cf.
A025048,
A025049,
A059893,
A106356,
A238279,
A335448,
A344604,
A344615,
A344653,
A344742,
A345163,
A348377.
-
stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
Select[Range[0,100],wigQ@*stc]
A374249
Numbers k such that the k-th composition in standard order has its equal parts contiguous.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 52, 56, 58, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85
Offset: 1
The terms together with their standard compositions begin:
0: ()
1: (1)
2: (2)
3: (1,1)
4: (3)
5: (2,1)
6: (1,2)
7: (1,1,1)
8: (4)
9: (3,1)
10: (2,2)
11: (2,1,1)
12: (1,3)
14: (1,1,2)
15: (1,1,1,1)
16: (5)
See A374253 for the complement: 13, 22, 25, 27, 29, ...
Compositions of this type are counted by
A274174.
Permutations of prime indices of this type are counted by
A333175.
A066099 lists compositions in standard order.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
Cf.
A106356,
A124762,
A238130,
A238279,
A261982,
A272919,
A333382,
A335450,
A335460,
A335524,
A335525.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],UnsameQ@@First/@Split[stc[#]]&]
A333382
Number of adjacent unequal parts in the n-th composition in standard-order.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 0, 2, 2, 1, 1, 2, 0, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 2, 1, 1, 2
Offset: 0
The 46th composition in standard order is (2,1,1,2), with maximal runs ((2),(1,1),(2)), so a(46) = 3 - 1 = 2.
Indices of first appearances (not counting 0) are
A113835.
Partitions whose 0-appended first differences are a run are
A007862.
Partitions whose first differences are a run are
A049988.
A triangle counting maximal anti-runs of compositions is
A106356.
A triangle counting maximal runs of compositions is
A238279.
All of the following pertain to compositions in standard order (
A066099):
- Adjacent equal pairs are counted by
A124762.
- Weakly decreasing runs are counted by
A124765.
- Weakly increasing runs are counted by
A124766.
- Equal runs are counted by
A124767.
- Strictly increasing runs are counted by
A124768.
- Strictly decreasing runs are counted by
A124769.
- Strict compositions are ranked by
A233564.
- Constant compositions are ranked by
A272919.
- Normal compositions are ranked by
A333217.
- Anti-runs are counted by
A333381.
Cf.
A000005,
A000120,
A003242,
A029931,
A048793,
A059893,
A070939,
A114994,
A225620,
A228351,
A238424.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[Length[Select[Partition[stc[n],2,1],UnsameQ@@#&]],{n,0,100}]
A333627
The a(n)-th composition in standard order is the sequence of run-lengths of the n-th composition in standard order.
Original entry on oeis.org
0, 1, 1, 2, 1, 3, 3, 4, 1, 3, 2, 6, 3, 7, 5, 8, 1, 3, 3, 6, 3, 5, 7, 12, 3, 7, 6, 14, 5, 11, 9, 16, 1, 3, 3, 6, 2, 7, 7, 12, 3, 7, 4, 10, 7, 15, 13, 24, 3, 7, 7, 14, 7, 13, 15, 28, 5, 11, 10, 22, 9, 19, 17, 32, 1, 3, 3, 6, 3, 7, 7, 12, 3, 5, 6, 14, 7, 15, 13
Offset: 0
The standard compositions and their run-lengths:
0 ~ () -> () ~ 0
1 ~ (1) -> (1) ~ 1
2 ~ (2) -> (1) ~ 1
3 ~ (11) -> (2) ~ 2
4 ~ (3) -> (1) ~ 1
5 ~ (21) -> (11) ~ 3
6 ~ (12) -> (11) ~ 3
7 ~ (111) -> (3) ~ 4
8 ~ (4) -> (1) ~ 1
9 ~ (31) -> (11) ~ 3
10 ~ (22) -> (2) ~ 2
11 ~ (211) -> (12) ~ 6
12 ~ (13) -> (11) ~ 3
13 ~ (121) -> (111) ~ 7
14 ~ (112) -> (21) ~ 5
15 ~ (1111) -> (4) ~ 8
16 ~ (5) -> (1) ~ 1
17 ~ (41) -> (11) ~ 3
18 ~ (32) -> (11) ~ 3
19 ~ (311) -> (12) ~ 6
Positions of first appearances are
A333630.
All of the following pertain to compositions in standard order (
A066099):
- The partial sums from the right are
A048793.
- Adjacent equal pairs are counted by
A124762.
- Equal runs are counted by
A124767.
- Strict compositions are ranked by
A233564.
- The partial sums from the left are
A272020.
- Constant compositions are ranked by
A272919.
- Normal compositions are ranked by
A333217.
- Anti-runs are counted by
A333381.
- Adjacent unequal pairs are counted by
A333382.
- First appearances of run-resistances are
A333629.
Cf.
A029931,
A098504,
A114994,
A225620,
A228351,
A238279,
A242882,
A318928,
A329744,
A329747,
A333489.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2,{n,0,30}]
A124765
Number of monotonically decreasing runs for compositions in standard order.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3
Offset: 0
Composition number 11 is 2,1,1; the decreasing runs are 2,1,1; so a(11) = 1.
The table starts:
0
1
1 1
1 1 2 1
1 1 1 1 2 2 2 1
1 1 1 1 2 1 2 1 2 2 2 2 2 2 2 1
1 1 1 1 1 1 2 1 2 2 1 1 2 2 2 1 2 2 2 2 3 2 3 2 2 2 2 2 2 2 2 1
Compositions of n with k strict ascents are
A238343.
All of the following pertain to compositions in standard order (
A066099):
- Weakly decreasing compositions are
A114994.
- Weakly decreasing runs are counted by
A124765.
- Weakly increasing runs are counted by
A124766.
- Equal runs are counted by
A124767.
- Strictly increasing runs are counted by
A124768.
- Strictly decreasing runs are counted by
A124769.
- Weakly increasing compositions are
A225620.
- Constant compositions are
A272919.
- Strictly decreasing compositions are
A333255.
- Strictly increasing compositions are
A333256.
- Anti-runs are counted by
A333381.
- Adjacent unequal pairs are counted by
A333382.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Table[Length[Split[stc[n],GreaterEqual]],{n,0,100}] (* Gus Wiseman, Apr 08 2020 *)
A353847
Composition run-sum transformation in terms of standard composition numbers. The a(k)-th composition in standard order is the sequence of run-sums of the k-th composition in standard order. Takes each index of a row of A066099 to the index of the row consisting of its run-sums.
Original entry on oeis.org
0, 1, 2, 2, 4, 5, 6, 4, 8, 9, 8, 10, 12, 13, 10, 8, 16, 17, 18, 18, 20, 17, 22, 20, 24, 25, 24, 26, 20, 21, 18, 16, 32, 33, 34, 34, 32, 37, 38, 36, 40, 41, 32, 34, 44, 45, 42, 40, 48, 49, 50, 50, 52, 49, 54, 52, 40, 41, 40, 42, 36, 37, 34, 32, 64, 65, 66, 66
Offset: 0
As a triangle:
0
1
2 2
4 5 6 4
8 9 8 10 12 13 10 8
16 17 18 18 20 17 22 20 24 25 24 26 20 21 18 16
These are the standard composition numbers of the following compositions (transposed):
() (1) (2) (3) (4) (5)
(2) (2,1) (3,1) (4,1)
(1,2) (4) (3,2)
(3) (2,2) (3,2)
(1,3) (2,3)
(1,2,1) (4,1)
(2,2) (2,1,2)
(4) (2,3)
(1,4)
(1,3,1)
(1,4)
(1,2,2)
(2,3)
(2,2,1)
(3,2)
(5)
Standard compositions are listed by
A066099.
The version for partitions is
A353832.
The run-sums themselves are listed by
A353932, with
A353849 distinct terms.
A005811 counts runs in binary expansion.
A353838 ranks partitions with all distinct run-sums, counted by
A353837.
A353851 counts compositions with all equal run-sums, ranked by
A353848.
A353852 ranks compositions with all distinct run-sums, counted by
A353850.
A353860 counts collapsible compositions.
A353863 counts run-sum-complete partitions.
-
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
Table[stcinv[Total/@Split[stc[n]]],{n,0,100}]
A373948
Run-compression encoded as a transformation of compositions in standard order.
Original entry on oeis.org
0, 1, 2, 1, 4, 5, 6, 1, 8, 9, 2, 5, 12, 13, 6, 1, 16, 17, 18, 9, 20, 5, 22, 5, 24, 25, 6, 13, 12, 13, 6, 1, 32, 33, 34, 17, 4, 37, 38, 9, 40, 41, 2, 5, 44, 45, 22, 5, 48, 49, 50, 25, 52, 13, 54, 13, 24, 25, 6, 13, 12, 13, 6, 1, 64, 65, 66, 33, 68, 69, 70, 17, 72
Offset: 0
The standard compositions and their compressions begin:
0: () --> 0: ()
1: (1) --> 1: (1)
2: (2) --> 2: (2)
3: (1,1) --> 1: (1)
4: (3) --> 4: (3)
5: (2,1) --> 5: (2,1)
6: (1,2) --> 6: (1,2)
7: (1,1,1) --> 1: (1)
8: (4) --> 8: (4)
9: (3,1) --> 9: (3,1)
10: (2,2) --> 2: (2)
11: (2,1,1) --> 5: (2,1)
12: (1,3) --> 12: (1,3)
13: (1,2,1) --> 13: (1,2,1)
14: (1,1,2) --> 6: (1,2)
15: (1,1,1,1) --> 1: (1)
Sum of standard composition for a(n) is given by
A373953, length
A124767.
A037201 gives compression of first differences of primes, halved
A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
-
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
Table[stcinv[First/@Split[stc[n]]],{n,0,30}]
Comments