cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 82 results. Next

A075542 Duplicate of A064113.

Original entry on oeis.org

2, 15, 36, 39, 46, 54, 55, 73, 102, 107, 110, 118, 129, 160, 164, 184, 187, 194, 199
Offset: 1

Views

Author

Keywords

A238279 Triangle read by rows: T(n,k) is the number of compositions of n into nonzero parts with k parts directly followed by a different part, n>=0, 0<=k<=A004523(n-1).

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 1, 2, 10, 4, 4, 12, 14, 2, 2, 22, 29, 10, 1, 4, 26, 56, 36, 6, 3, 34, 100, 86, 31, 2, 4, 44, 148, 200, 99, 16, 1, 2, 54, 230, 374, 278, 78, 8, 6, 58, 322, 680, 654, 274, 52, 2, 2, 74, 446, 1122, 1390, 814, 225, 22, 1, 4, 88, 573, 1796, 2714, 2058, 813, 136, 10, 4, 88, 778, 2694, 4927
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 22 2014

Keywords

Comments

Same as A238130, with zeros omitted.
Last elements in rows are 1, 1, 2, 2, 1, 4, 2, 1, 6, 2, 1, 8, ... with g.f. -(x^6+x^4-2*x^2-x-1)/(x^6-2*x^3+1).
For n > 0, also the number of compositions of n with k + 1 runs. - Gus Wiseman, Apr 10 2020

Examples

			Triangle starts:
  00:  1;
  01:  1;
  02:  2;
  03:  2,   2;
  04:  3,   4,   1;
  05:  2,  10,   4;
  06:  4,  12,  14,    2;
  07:  2,  22,  29,   10,    1;
  08:  4,  26,  56,   36,    6;
  09:  3,  34, 100,   86,   31,    2;
  10:  4,  44, 148,  200,   99,   16,    1;
  11:  2,  54, 230,  374,  278,   78,    8;
  12:  6,  58, 322,  680,  654,  274,   52,    2;
  13:  2,  74, 446, 1122, 1390,  814,  225,   22,   1;
  14:  4,  88, 573, 1796, 2714, 2058,  813,  136,  10;
  15:  4,  88, 778, 2694, 4927, 4752, 2444,  618,  77,  2;
  16:  5, 110, 953, 3954, 8531, 9930, 6563, 2278, 415, 28, 1;
  ...
Row n=5 is 2, 10, 4 because in the 16 compositions of 5
  ##:  [composition]  no. of changes
  01:  [ 1 1 1 1 1 ]   0
  02:  [ 1 1 1 2 ]   1
  03:  [ 1 1 2 1 ]   2
  04:  [ 1 1 3 ]   1
  05:  [ 1 2 1 1 ]   2
  06:  [ 1 2 2 ]   1
  07:  [ 1 3 1 ]   2
  08:  [ 1 4 ]   1
  09:  [ 2 1 1 1 ]   1
  10:  [ 2 1 2 ]   2
  11:  [ 2 2 1 ]   1
  12:  [ 2 3 ]   1
  13:  [ 3 1 1 ]   1
  14:  [ 3 2 ]   1
  15:  [ 4 1 ]   1
  16:  [ 5 ]   0
there are 2 with no changes, 10 with one change, and 4 with two changes.
		

Crossrefs

Columns k=0-10 give: A000005 (for n>0), 2*A002133, A244714, A244715, A244716, A244717, A244718, A244719, A244720, A244721, A244722.
Row lengths are A004523.
Row sums are A011782.
The version counting adjacent equal parts is A106356.
The version for ascents/descents is A238343.
The version for weak ascents/descents is A333213.
The k-th composition in standard-order has A124762(k) adjacent equal parts, A124767(k) maximal runs, A333382(k) adjacent unequal parts, and A333381(k) maximal anti-runs.

Programs

  • Maple
    b:= proc(n, v) option remember; `if`(n=0, 1, expand(
          add(b(n-i, i)*`if`(v=0 or v=i, 1, x), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_, v_] := b[n, v] = If[n == 0, 1, Expand[Sum[b[n-i, i]*If[v == 0 || v == i, 1, x], {i, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *)
    Table[If[n==0,1,Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#]]==k+1&]]],{n,0,12},{k,0,If[n==0,0,Floor[2*(n-1)/3]]}] (* Gus Wiseman, Apr 10 2020 *)
  • PARI
    T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N),h=(1+ sum(i=1,N,(x^i-y*x^i)/(1+y*x^i-x^i)))/(1-sum(i=1,N, y*x^i/(1+y*x^i-x^i)))); for(n=0,N-1, print(Vecrev(polcoeff(h,n))))}
    T_xy(16) \\ John Tyler Rascoe, Jul 10 2024

Formula

G.f.: A(x,y) = ( 1 + Sum_{i>0} ((x^i)*(1 - y)/(1 + y*x^i - x^i)) )/( 1 - Sum_{i>0} ((y*x^i)/(1 + y*x^i - x^i)) ). - John Tyler Rascoe, Jul 10 2024

A106356 Triangle T(n,k) 0<=k

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 4, 3, 0, 1, 7, 6, 2, 0, 1, 14, 7, 8, 2, 0, 1, 23, 20, 10, 8, 2, 0, 1, 39, 42, 22, 13, 9, 2, 0, 1, 71, 72, 58, 28, 14, 10, 2, 0, 1, 124, 141, 112, 72, 33, 16, 11, 2, 0, 1, 214, 280, 219, 150, 92, 36, 18, 12, 2, 0, 1, 378, 516, 466, 311, 189, 112, 40, 20, 13, 2, 0, 1
Offset: 1

Views

Author

Christian G. Bower, Apr 29 2005

Keywords

Comments

For n > 0, also the number of compositions of n with k + 1 maximal anti-runs (sequences without adjacent equal terms). - Gus Wiseman, Mar 23 2020

Examples

			T(4,1) = 3 because the compositions of 4 with 1 adjacent equal part are 1+1+2, 2+1+1, 2+2.
Triangle begins:
   1;
   1,  1;
   3,  0,  1;
   4,  3,  0, 1;
   7,  6,  2, 0, 1;
  14,  7,  8, 2, 0, 1;
  23, 20, 10, 8, 2, 0, 1;
  ...
From _Gus Wiseman_, Mar 23 2020 (Start)
Row n = 6 counts the following compositions (empty column shown by dot):
  (6)     (33)    (222)    (11112)  .  (111111)
  (15)    (114)   (1113)   (21111)
  (24)    (411)   (1122)
  (42)    (1131)  (2211)
  (51)    (1221)  (3111)
  (123)   (1311)  (11121)
  (132)   (2112)  (11211)
  (141)           (12111)
  (213)
  (231)
  (312)
  (321)
  (1212)
  (2121)
(End)
		

Crossrefs

Row sums: 2^(n-1)=A000079(n-1). Columns 0-4: A003242, A106357-A106360.
The version counting adjacent unequal parts is A238279.
The k-th composition in standard-order has A124762(k) adjacent equal parts and A333382(k) adjacent unequal parts.
The k-th composition in standard-order has A124767(k) maximal runs and A333381(k) maximal anti-runs.
The version for ascents/descents is A238343.
The version for weak ascents/descents is A333213.

Programs

  • Maple
    b:= proc(n, h, t) option remember;
          if n=0 then `if`(t=0, 1, 0)
        elif t<0 then 0
        else add(b(n-j, j, `if`(j=h, t-1, t)), j=1..n)
          fi
        end:
    T:= (n, k)-> b(n, -1, k):
    seq(seq(T(n, k), k=0..n-1), n=1..15); # Alois P. Heinz, Oct 23 2011
  • Mathematica
    b[n_, h_, t_] := b[n, h, t] = If[n == 0, If[t == 0, 1, 0], If[t<0, 0, Sum[b[n-j, j, If [j == h, t-1, t]], {j, 1, n}]]]; T[n_, k_] := b[n, -1, k]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Feb 20 2015, after Alois P. Heinz *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],n==0||Length[Split[#,#1!=#2&]]==k+1&]],{n,0,12},{k,0,n}] (* Gus Wiseman, Mar 23 2020 *)

A006562 Balanced primes (of order one): primes which are the average of the previous prime and the following prime.

Original entry on oeis.org

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A075540. - Franklin T. Adams-Watters, Jan 11 2006
This subsequence of A125830 and of A162174 gives primes of level (1,1): More generally, the i-th prime p(i) is of level (1,k) if and only if it has level 1 in A117563 and 2 p(i) - p(i+1) = p(i-k). - Rémi Eismann, Feb 15 2007
Note the similarity between plots of A006562 and A013916. - Bill McEachen, Sep 07 2009
Balanced primes U strong primes = good primes. Or, A006562 U A051634 = A046869. - Juri-Stepan Gerasimov, Mar 01 2010
Primes prime(n) such that A001223(n-1) = A001223(n). - Irina Gerasimova, Jul 11 2013
Numbers m such that A346399(m) is odd and >= 3. - Ya-Ping Lu, Dec 26 2021 and May 07 2024
"Balanced" means that the next and preceding gap are of the same size, i.e., the second difference A036263 vanishes; so these are the primes whose indices are 1 more than indices of zeros in A036263, listed in A064113. - M. F. Hasler, Oct 15 2024
Primes which are the average of three consecutive primes. - Peter Schorn, Apr 30 2025

Examples

			5 belongs to the sequence because 5 = (3 + 7)/2. Likewise 53 = (47 + 59)/2.
5 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (3, 5, 7).
53 belongs to the sequence because it is a term, but not first or last, of the AP of consecutive primes (47, 53, 59).
257 and 263 belong to the sequence because they are terms, but not first or last, of the AP of consecutive primes (251, 257, 263, 269).
		

References

  • A. Murthy, Smarandache Notions Journal, Vol. 11 N. 1-2-3 Spring 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.

Crossrefs

Primes A000040 whose indices are 1 more than A064113, indices of zeros in A036263 (second differences of the primes).
Cf. A225494 (multiplicative closure); complement of A178943 with respect to A000040.
Cf. A055380, A051795, A081415, A096710 for other balanced prime sequences.

Programs

  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = filter ((== 1) . a010051) a075540_list
    -- Reinhard Zumkeller, Jan 20 2012
    
  • Haskell
    a006562 n = a006562_list !! (n-1)
    a006562_list = h a000040_list where
       h (p:qs@(q:r:ps)) = if 2 * q == (p + r) then q : h qs else h qs
    -- Reinhard Zumkeller, May 09 2013
    
  • Magma
    [a: n in [1..1000] | IsPrime(a) where a is NthPrime(n)-NthPrime(n+1)+NthPrime(n+2)]; // Vincenzo Librandi, Jun 23 2016
    
  • Mathematica
    Transpose[ Select[ Partition[ Prime[ Range[1000]], 3, 1], #[[2]] ==(#[[1]] + #[[3]])/2 &]][[2]]
    p=Prime[Range[1000]]; p[[Flatten[1+Position[Differences[p, 2], 0]]]]
    Prime[#]&/@SequencePosition[Differences[Prime[Range[800]]],{x_,x_}][[All,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 31 2019 *)
  • PARI
    betwixtpr(n) = { local(c1,c2,x,y); for(x=2,n, c1=c2=0; for(y=prime(x-1)+1,prime(x)-1, if(!isprime(y),c1++); ); for(y=prime(x)+1,prime(x+1)-1, if(!isprime(y),c2++); ); if(c1==c2,print1(prime(x)",")) ) } \\ Cino Hilliard, Jan 25 2005
    
  • PARI
    forprime(p=1,999, p-precprime(n-1)==nextprime(p+1)-p && print1(p",")) \\ M. F. Hasler, Jun 01 2013
    
  • PARI
    is(n)=n-precprime(n-1)==nextprime(n+1)-n && isprime(n) \\ Charles R Greathouse IV, Apr 07 2016
    
  • Python
    from sympy import nextprime; p, q, r = 2, 3, 5
    while q < 6000:
        if 2*q == p + r: print(q, end = ", ")
        p, q, r = q, r, nextprime(r) # Ya-Ping Lu, Dec 23 2021

Formula

2*p_n = p_(n-1) + p_(n+1).
Equals { p = prime(k) | A118534(k) = prime(k-1) }. - Rémi Eismann, Nov 30 2009
a(n) = A000040(A064113(n) + 1) = (A122535(n) + A181424(n)) / 2. - Reinhard Zumkeller, Jan 20 2012
a(n) = A122535(n) + A117217(n). - Zak Seidov, Feb 14 2013
Equals A145025 intersect A000040 = A145025 \ A024675. - M. F. Hasler, Jun 01 2013
Conjecture: Limit_{n->oo} n*(log(a(n)))^2 / a(n) = 1/2. - Alain Rocchelli, Mar 21 2024
Conjecture: The asymptotic limit of the average of a(n+1)-a(n) is equivalent to 2*(log(a(n)))^2. Otherwise formulated: 2 * Sum_{n=1..N} (log(a(n)))^2 ~ a(N). - Alain Rocchelli, Mar 23 2024

Extensions

Reworded comment and added formula from R. Eismann. - M. F. Hasler, Nov 30 2009
Edited by Daniel Forgues, Jan 15 2011

A036263 Second differences of primes.

Original entry on oeis.org

1, 0, 2, -2, 2, -2, 2, 2, -4, 4, -2, -2, 2, 2, 0, -4, 4, -2, -2, 4, -2, 2, 2, -4, -2, 2, -2, 2, 10, -10, 2, -4, 8, -8, 4, 0, -2, 2, 0, -4, 8, -8, 2, -2, 10, 0, -8, -2, 2, 2, -4, 8, -4, 0, 0, -4, 4, -2, -2, 8, 4, -10, -2, 2, 10, -8, 4, -8, 2, 2, 2, -2, 0, -2, 2, 2, -4, 4, 2, -8, 8, -8, 4, -2, 2, 2, -4, -2, 2, 8, -4
Offset: 1

Views

Author

Keywords

Examples

			a(3) = 5 + 11 - 2*7 = 16 - 14 = 2.
		

Crossrefs

For records see A293154, A293155.

Programs

  • Haskell
    a036263 n = a036263_list !! (n-1)
    a036263_list = zipWith (-) (tail a001223_list) a001223_list
    -- Reinhard Zumkeller, Oct 29 2011
    
  • Maple
    A036263:=n->ithprime(n) + ithprime(n+2) - 2*ithprime(n+1); seq(A036263(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014
  • Mathematica
    Table[Prime[n - 1] + Prime[n + 1] - 2*Prime[n], {n, 2, 105}]
    Differences[Prime[Range[100]], 2] (* Harvey P. Dale, Oct 14 2012 *)
  • PARI
    for(n=2,100,print1(prime(n+2)-2*prime(n+1)+prime(n)","))
    
  • Python
    from sympy import prime
    def A036263(n): return prime(n)-(prime(n+1)<<1)+prime(n+2) # Chai Wah Wu, Sep 28 2024

Formula

a(A064113(n)) = 0. - Reinhard Zumkeller, Jan 20 2012
a(n) = prime(n) + prime(n+2) - 2*prime(n+1). - Thomas Ordowski, Jul 21 2012
Conjecture: |a(1)| + |a(2)| + ... + |a(n)| ~ prime(n). - Thomas Ordowski, Jul 21 2012
a(n) = A001223(n+1) - A001223(n). - R. J. Mathar, Sep 19 2013
Sum_{i = 1..n - 1} a(i) = A046933(n), n >= 1. - Daniel Forgues, Apr 15 2014
Sum_{i = 2..n - 1} a(i) = prime(n + 1) - prime(n) - 2; Sum_{i = 2..n - 1} a(i) = 0 whenever prime(n) is a lesser of twin primes. - Hamdi Murat Yildirim, Jun 24 2014

A333254 Lengths of maximal runs in the sequence of prime gaps (A001223).

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2020

Keywords

Comments

Prime gaps are differences between adjacent prime numbers.
Also lengths of maximal arithmetic progressions of consecutive primes.

Examples

			The prime gaps split into the following runs: (1), (2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), (2), (6), (4), ...
		

Crossrefs

The version for A000002 is A000002. Similarly for A001462.
The unequal version is A333216.
The weakly decreasing version is A333212.
The weakly increasing version is A333215.
The strictly decreasing version is A333252.
The strictly increasing version is A333253.
Positions of first appearances are A335406.
The first term of the first length-n arithmetic progression of consecutive primes is A006560(n), with index A089180(n).
Prime gaps are A001223.
Positions of adjacent equal prime gaps are A064113.
Positions of adjacent unequal prime gaps are A333214.

Programs

  • Maple
    p:= 3: t:= 1: R:= NULL: s:= 1: count:= 0:
    for i from 2 while count < 100 do
      q:= nextprime(p);
      g:= q-p; p:= q;
      if g = t then s:= s+1
      else count:= count+1; R:= R, s; t:= g; s:= 1;
      fi
    od:
    R; # Robert Israel, Jan 06 2021
  • Mathematica
    Length/@Split[Differences[Array[Prime,100]],#1==#2&]//Most

Formula

Partial sums are A333214.

A376593 Second differences of consecutive nonsquarefree numbers (A013929). First differences of A078147.

Original entry on oeis.org

-3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, 3, 0, -1, -2, 3, -3, 2, 1, -2, 0, 2, -2, -1, 0, 3, 0, 0, 0, -3, 2, -2, 2, -2, 0, 1, 2, -1, -2, 3, 0, -1, -2, 1, 0, -1, 2, 1, -2, 0, 2, -3, 1, -1, 2, -2, 3, 0, 0, -3, 2, 1, -2, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2024

Keywords

Comments

The range is {-3, -2, -1, 0, 1, 2, 3}.

Examples

			The nonsquarefree numbers (A013929) are:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, ...
with first differences (A376593):
  -3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, ...
		

Crossrefs

The version for A000002 is A376604, first differences of A054354.
The first differences were A078147.
Zeros are A376594, complement A376595.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, differences A076259.
A064113 lists positions of adjacent equal prime gaps.
A114374 counts partitions into nonsquarefree numbers.
A246655 lists prime-powers exclusive, inclusive A000961.
A333254 lists run-lengths of differences between consecutive primes.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For nonsquarefree numbers: A013929 (terms), A078147 (first differences), A376594 (inflections and undulations), A376595 (nonzero curvature).

Programs

  • Mathematica
    Differences[Select[Range[100],!SquareFreeQ[#]&],2]
  • Python
    from math import isqrt
    from sympy import mobius, factorint
    def A376593(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        k = next(i for i in range(1,5) if any(d>1 for d in factorint(m+i).values()))
        return next(i for i in range(1-k,5-k) if any(d>1 for d in factorint(m+(k<<1)+i).values())) # Chai Wah Wu, Oct 02 2024

A037201 Differences between consecutive primes (A001223) but with repeats omitted.

Original entry on oeis.org

1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 10, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4
Offset: 1

Views

Author

Keywords

Comments

Also the run-compression of the sequence of first differences of prime numbers, where we define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1). - Gus Wiseman, Sep 16 2024

Crossrefs

This is the run-compression of A001223 = first differences of A000040.
The repeats were at positions A064113 before being omitted.
Adding up runs instead of compressing them gives A373822.
The even terms halved are A373947.
For prime-powers instead of prime numbers we have A376308.
Positions of first appearances are A376520, sorted A376521.
A003242 counts compressed compositions.
A333254 lists run-lengths of differences between consecutive primes.
A373948 encodes compression using compositions in standard order.

Programs

  • Haskell
    a037201 n = a037201_list !! (n-1)
    a037201_list = f a001223_list where
       f (x:xs@(x':_)) | x == x'   = f xs
                       | otherwise = x : f xs
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Mathematica
    Flatten[Split[Differences[Prime[Range[150]]]]/.{(k_)..}:>k] (* based on a program by Harvey P. Dale, Jun 21 2012 *)
  • PARI
    t=0;p=2;forprime(q=3,1e3,if(q-p!=t,print1(q-p", "));t=q-p;p=q) \\ Charles R Greathouse IV, Feb 27 2012

Formula

a(n>1) = 2*A373947(n-1). - Gus Wiseman, Sep 16 2024

Extensions

Offset corrected by Reinhard Zumkeller, Feb 27 2012

A333214 Positions of adjacent unequal terms in the sequence of differences between primes.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 74, 75
Offset: 1

Views

Author

Gus Wiseman, Mar 15 2020

Keywords

Examples

			The sequence of differences between primes splits into the following runs: (1), (2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), (2), (6), (4), (2), (6), (4), (6).
		

Crossrefs

The version for the Kolakoski sequence is A054353.
Complement of A064113 (the version for adjacent equal terms).
Runs of compositions in standard order are counted by A124767.
A triangle for runs of compositions is A238279.
The version for strict ascents is A258025.
The version for strict descents is A258026.
The version for weak ascents is A333230.
The version for weak descents is A333231.
First differences are A333254 (if the first term is 0).

Programs

  • Mathematica
    Accumulate[Length/@Split[Differences[Array[Prime,100]],#1==#2&]]//Most
    - or -
    Select[Range[100],Prime[#+1]-Prime[#]!=Prime[#+2]-Prime[#+1]&]

Formula

Numbers k such that prime(k+1) - prime(k) != prime(k+2) - prime(k+1).

A073445 Second differences of A002808, the sequence of composites.

Original entry on oeis.org

0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0
Offset: 1

Views

Author

Labos Elemer, Aug 01 2002

Keywords

Examples

			From _Gus Wiseman_, Oct 10 2024: (Start)
The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, ...
(End)
		

Crossrefs

Also first differences of A054546.
For first differences we had A073783 (ones A375929), run-lengths A376680.
Positions of zeros are A376602.
Positions of nonzeros are A376603.
Positions of ones are A376651, negative-ones A376652.
A002808 lists the composite numbers.
A064113 lists positions of adjacent equal prime gaps.
A333254 gives run-lengths of differences between consecutive primes.
Other second differences: A036263 (prime), A376590 (squarefree), A376596 (prime-power), A376604 (Kolakoski).

Programs

  • Haskell
    a073445 n = a073445_list !! (n-1)
    a073445_list = zipWith (-) (tail a073783_list) a073783_list
    -- Reinhard Zumkeller, Jan 10 2013
    
  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x]; Table[c[w+2]-2*c[w+1]+c[w], {w, 200}]
    (* second program *)
    Differences[Select[Range[100],CompositeQ],2] (* Gus Wiseman, Oct 08 2024 *)
  • Python
    from sympy import primepi
    def A073445(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        return (a:=iterfun(f:=lambda x:n+primepi(x)+1,n))-((b:=iterfun(lambda x:f(x)+1,a))<<1)+iterfun(lambda x:f(x)+2,b) # Chai Wah Wu, Oct 03 2024

Formula

a(n) = c(n+2)-2*c(n+1)+c(n), where c(n) = A002808(n).
a(n) = A073783(n+1) - A073783(n). - Reinhard Zumkeller, Jan 10 2013
Showing 1-10 of 82 results. Next