cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 250 results. Next

A333769 Irregular triangle read by rows where row k is the sequence of run-lengths of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 10 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The standard compositions and their run-lengths:
   0:        () -> ()
   1:       (1) -> (1)
   2:       (2) -> (1)
   3:     (1,1) -> (2)
   4:       (3) -> (1)
   5:     (2,1) -> (1,1)
   6:     (1,2) -> (1,1)
   7:   (1,1,1) -> (3)
   8:       (4) -> (1)
   9:     (3,1) -> (1,1)
  10:     (2,2) -> (2)
  11:   (2,1,1) -> (1,2)
  12:     (1,3) -> (1,1)
  13:   (1,2,1) -> (1,1,1)
  14:   (1,1,2) -> (2,1)
  15: (1,1,1,1) -> (4)
  16:       (5) -> (1)
  17:     (4,1) -> (1,1)
  18:     (3,2) -> (1,1)
  19:   (3,1,1) -> (1,2)
For example, the 119th composition is (1,1,2,1,1,1), so row 119 is (2,1,3).
		

Crossrefs

Row sums are A000120.
Row lengths are A124767.
Row k is the A333627(k)-th standard composition.
A triangle counting compositions by runs-resistance is A329744.
All of the following pertain to compositions in standard order (A066099):
- Partial sums from the right are A048793.
- Sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Strict compositions are A233564.
- Partial sums from the left are A272020.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Heinz number is A333219.
- Runs-resistance is A333628.
- First appearances of run-resistances are A333629.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length/@Split[stc[n]],{n,0,30}]

A335451 Number of permutations of the prime indices of n with all equal parts contiguous and none appearing more than twice.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 0, 1, 2, 0, 2, 1, 6, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 6, 1, 2, 2, 2, 1, 0, 1, 2, 2, 2, 1, 0, 2, 0, 2, 2, 1, 6, 1, 2, 2, 0, 2, 6, 1, 2, 2, 6, 1, 0, 1, 2, 2, 2, 2, 6, 1, 0, 0, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(90) = 6 permutations are (1,2,2,3), (1,3,2,2), (2,2,1,3), (2,2,3,1), (3,1,2,2), (3,2,2,1).
		

Crossrefs

Separations are counted by A003242 and A335452 and ranked by A333489.
Permutations of prime indices are counted by A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
Permutations of prime indices with equal parts contiguous are A333175.
STC-numbers of permutations of prime indices are A333221.
(1,2,1) and (2,1,2)-avoiding permutations of prime indices are A333175.
Numbers whose prime indices are inseparable are A335448.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.
Strict permutations of prime indices are counted by A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],!MatchQ[#,{_,x_,,x_,_}]&]],{n,100}]

Formula

a(n) = A001221(n)! if n is cubefree, otherwise 0.

A349800 Number of integer compositions of n that are weakly alternating and have at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 16, 33, 62, 113, 205, 373, 664, 1190, 2113, 3744, 6618, 11683, 20564, 36164, 63489, 111343, 195042, 341357, 596892, 1042976, 1821179, 3178145, 5543173, 9663545, 16839321, 29332231, 51075576, 88908912, 154722756, 269186074, 468221264
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
This sequence counts compositions that are weakly but not strongly alternating; also weakly alternating non-anti-run compositions.

Examples

			The a(2) = 1 through a(6) = 16 compositions:
  (1,1)  (1,1,1)  (2,2)      (1,1,3)      (3,3)
                  (1,1,2)    (1,2,2)      (1,1,4)
                  (2,1,1)    (2,2,1)      (2,2,2)
                  (1,1,1,1)  (3,1,1)      (4,1,1)
                             (1,1,1,2)    (1,1,1,3)
                             (1,1,2,1)    (1,1,2,2)
                             (1,2,1,1)    (1,1,3,1)
                             (2,1,1,1)    (1,3,1,1)
                             (1,1,1,1,1)  (2,2,1,1)
                                          (3,1,1,1)
                                          (1,1,1,1,2)
                                          (1,1,1,2,1)
                                          (1,1,2,1,1)
                                          (1,2,1,1,1)
                                          (2,1,1,1,1)
                                          (1,1,1,1,1,1)
		

Crossrefs

This is the weakly alternating case of A345192, ranked by A345168.
The case of partitions is A349795, ranked by A350137.
The version counting permutations of prime indices is A349798.
These compositions are ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345173 = non-alternating anti-run partitions, ranked by A345166.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A348377 = non-alternating non-twin compositions.
A349801 = non-alternating partitions, ranked by A289553.
Weakly alternating:
- A349052 = compositions, directed A129852/A129853, complement A349053.
- A349056 = permutations of prime indices, complement A349797.
- A349057 = complement of standard composition numbers (too dense).
- A349058 = patterns, complement A350138.
- A349059 = ordered factorizations, complement A350139.
- A349060 = partitions, complement A349061.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],(whkQ[#]||whkQ[-#])&&!wigQ[#]&]],{n,0,10}]

Formula

a(n) = A349052(n) - A025047(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 31 2024

A376306 Run-lengths of the sequence of first differences of squarefree numbers.

Original entry on oeis.org

2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 21 2024

Keywords

Examples

			The sequence of squarefree numbers (A005117) is:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, ...
The sequence of first differences (A076259) of squarefree numbers is:
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, ...
with runs:
  (1,1),(2),(1,1),(3),(1),(2),(1,1),(2,2,2),(1,1),(3,3),(1,1),(2),(1,1), ...
with lengths A376306 (this sequence).
		

Crossrefs

Run-lengths of first differences of A005117.
Before taking run-lengths we had A076259, ones A375927.
For prime instead of squarefree numbers we have A333254.
For compression instead of run-lengths we have A376305.
For run-sums instead of run-lengths we have A376307.
For prime-powers instead of squarefree numbers we have A376309.
For positions of first appearances instead of run-lengths we have A376311.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed or anti-run compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Length/@Split[Differences[Select[Range[100],SquareFreeQ]]]

A376312 Run-compression of first differences (A078147) of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 4, 1, 3, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 2, 1, 3, 4, 2, 4, 1, 2, 1, 3, 1, 4, 1, 3, 4, 2, 4, 3, 1, 4, 1, 3, 4, 2, 4, 2, 1, 3, 2, 4, 1, 3, 4, 2, 3, 1, 3, 1, 4, 1, 3, 2, 1, 3, 4, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 24 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of nonsquarefree numbers (A013929) is:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
  (4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
and run-compression (A376312):
  4, 1, 3, 4, 2, 4, 1, 2, 1, 4, 1, 3, 1, 2, 4, 3, 1, 4, 3, 1, 4, 1, 3, 4, ...
		

Crossrefs

For nonprime instead of squarefree numbers we have A037201, halved A373947.
Before compressing we had A078147.
For run-sums instead of compression we have A376264.
For squarefree instead of nonsquarefree we have A376305, ones A376342.
For prime-powers instead of nonsquarefree numbers we have A376308.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    First/@Split[Differences[Select[Range[100], !SquareFreeQ[#]&]]]

A376340 Sorted positions of first appearances in A057820, the sequence of first differences of prime-powers.

Original entry on oeis.org

1, 4, 9, 12, 18, 24, 34, 47, 60, 79, 117, 178, 198, 206, 215, 244, 311, 402, 465, 614, 782, 1078, 1109, 1234, 1890, 1939, 1961, 2256, 2290, 3149, 3377, 3460, 3502, 3722, 3871, 4604, 4694, 6634, 8073, 8131, 8793, 12370, 12661, 14482, 14990, 15912, 17140, 19166
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2024

Keywords

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    24: {1,1,1,2}
    34: {1,7}
    47: {15}
    60: {1,1,2,3}
    79: {22}
   117: {2,2,6}
   178: {1,24}
   198: {1,2,2,5}
   206: {1,27}
   215: {3,14}
   244: {1,1,18}
		

Crossrefs

For compression instead of sorted firsts we have A376308.
For run-lengths instead of sorted firsts we have A376309.
For run-sums instead of sorted firsts we have A376310.
The version for squarefree numbers is the unsorted version of A376311.
The unsorted version is A376341.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A024619 and A361102 list non-prime-powers, first differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.

Programs

  • Mathematica
    q=Differences[Select[Range[100],PrimePowerQ]];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A386585 Triangle read by rows where T(n,k) is the number of integer partitions y of n into k = 0..n parts such that any multiset whose multiplicities are the parts of y is separable.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 1, 3, 3, 2, 1, 1, 0, 0, 1, 3, 4, 3, 2, 1, 1, 0, 0, 1, 5, 5, 5, 3, 2, 1, 1, 0, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2025

Keywords

Comments

We say that such partitions are of separable type.
A multiset is separable iff it has a permutation without any adjacent equal parts.

Examples

			Row n = 8 counts the following partitions:
  .  .  44  431  4211  41111  311111  2111111  11111111
            422  3311  32111  221111
            332  3221  22211
                 2222
with the following separable multisets:
  . . 11112222 11112223 11112234 11112345 11123456 11234567 12345678
               11112233 11122234 11122345 11223456
               11122233 11122334 11223345
                        11223344
Triangle begins:
  1
  0  1
  0  0  1
  0  0  1  1
  0  0  1  1  1
  0  0  1  2  1  1
  0  0  1  2  2  1  1
  0  0  1  3  3  2  1  1
  0  0  1  3  4  3  2  1  1
  0  0  1  5  5  5  3  2  1  1
  0  0  1  4  7  6  5  3  2  1  1
		

Crossrefs

This is the separable type case of A072233 or A008284.
Row sums are A336106, ranks A335127.
For separable instead of separable type we have A386583, inseparable A386584.
For inseparable instead of separable we have A386586, sums A025065, ranks A335126.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, ranks A351294.
A279790 counts disjoint families on strongly normal multisets.
A325534 counts separable multisets, ranks A335433.
A325535 counts inseparable multisets, ranks A335448.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295.
A386633 counts separable set partitions, row sums of A386635.
A386634 counts inseparable set partitions, row sums of A386636.

Programs

  • Mathematica
    sepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]!={};
    mst[y_]:=Join@@Table[ConstantArray[k,y[[k]]],{k,Length[y]}];
    Table[Length[Select[IntegerPartitions[n,{k}],sepQ[mst[#]]&]],{n,0,5},{k,0,n}]

Formula

a(n) = A072233(n) - A386586(n).

A386586 Triangle read by rows where T(n,k) is the number of integer partitions y of n into k parts such that any multiset whose multiplicities are the parts of y is inseparable.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 1, 0, 0, 0, 0, 0, 0, 1, 4, 4, 2, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 05 2025

Keywords

Comments

We say that such partitions are of inseparable type. This is different from inseparable partitions (see A386584). A multiset is separable iff it has a permutation without any adjacent equal parts.

Examples

			The partition y = (7,2,1) is the multiplicities of the multiset {1,1,1,1,1,1,1,2,2,3}, which is inseparable, so y is counted under T(10,3).
Row n = 10 counts the following partitions (A = 10):
  .  A  91  811  7111  61111  .  .  .  .  .
        82  721  6211
        73  631
        64  622
Triangle begins:
  0
  0 0
  0 1 0
  0 1 0 0
  0 1 1 0 0
  0 1 1 0 0 0
  0 1 2 1 0 0 0
  0 1 2 1 0 0 0 0
  0 1 3 2 1 0 0 0 0
  0 1 3 2 1 0 0 0 0 0
  0 1 4 4 2 1 0 0 0 0 0
		

Crossrefs

This is the inseparable type case of A008284 or A072233.
Row sums shifted left once are A025065 (ranks A335126), separable version A336106 (ranks A335127).
For separable instead of inseparable type we have A386583.
For integer partitions instead of normal multisets we have A386584.
For separable type instead of inseparable type we have A386585.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A239455 counts Look-and-Say partitions, ranks A351294.
A325534 counts separable multisets, ranks A335433.
A325535 counts inseparable multisets, ranks A335448.
A336103 counts normal separable multisets, inseparable A336102.
A351293 counts non-Look-and-Say partitions, ranks A351295.

Programs

  • Mathematica
    insepQ[y_]:=Select[Permutations[y],Length[Split[#]]==Length[y]&]=={};
    ptm[y_]:=Join@@Table[ConstantArray[k,y[[k]]],{k,Length[y]}];
    Table[Length[Select[IntegerPartitions[n,{k}],insepQ[ptm[#]]&]],{n,0,5},{k,0,n}]

Formula

a(n) = A072233(n) - A386585(n).

A374636 Number of integer compositions of n whose leaders of maximal weakly increasing runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 10, 28, 72, 178, 425, 985, 2237, 4999, 11016, 24006, 51822, 110983, 236064, 499168, 1050118, 2199304, 4587946, 9537506, 19765213, 40847186, 84205453, 173198096, 355520217, 728426569, 1489977348, 3043054678, 6206298312, 12641504738
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2024

Keywords

Comments

The leaders of maximal weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
Also the number of integer compositions of n matching the dashed pattern 1-32, ranked by A375137.
Also the number of integer compositions of n matching the dashed pattern 23-1, ranked by A375138.

Examples

			- The maximal weakly increasing runs of y = (1,1,3,2,1) are ((1,1,3),(2),(1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (1,3,2,1,1) are ((1,3),(2),(1,1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (2,3,1,1,1) are ((2,3),(1,1,1)) with leaders (2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,3,2,1) are ((2,3),(2),(1)) with leaders (2,2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,1,3,1,1) are ((2),(1,3),(1,1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
- The maximal weakly increasing runs of y = (2,1,1,3,1) are ((2),(1,1,3),(1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
The a(0) = 0 through a(8) = 10 compositions:
  .  .  .  .  .  .  (132)  (142)   (143)
                           (1132)  (152)
                           (1321)  (1142)
                                   (1232)
                                   (1322)
                                   (1421)
                                   (2132)
                                   (11132)
                                   (11321)
                                   (13211)
		

Crossrefs

The reverse version is the same.
For leaders of identical runs we have A056823.
The complement is counted by A189076.
The non-dashed version is A335514.
For leaders of anti-runs we have A374699, complement A374682.
For weakly decreasing runs we have the complement of A374747.
For leaders of strictly increasing runs we have A375135, complement A374697.
These compositions are ranked by A375137, reverse A375138.
A003242 counts anti-runs, ranks A333489.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,LessEqual]&]],{n,0,15}]
    (* or *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,y_,z_,_,x_,_}/;x
    				

Formula

a(n) = A011782(n) - A189076(n). - Jinyuan Wang, Feb 14 2025

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A374689 Number of integer compositions of n whose leaders of strictly increasing runs are strictly decreasing.

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 10, 13, 21, 32, 48, 66, 101, 144, 207, 298, 415, 592, 833, 1163, 1615, 2247, 3088, 4259, 5845, 7977, 10862, 14752, 19969, 26941, 36310, 48725, 65279, 87228, 116274, 154660, 205305, 271879, 359400, 474157, 624257, 820450, 1076357, 1409598
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing. The weakly decreasing version is A374697.

Examples

			The a(0) = 1 through a(8) = 21 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)
                (12)  (13)  (14)   (15)   (16)   (17)
                (21)  (31)  (23)   (24)   (25)   (26)
                            (32)   (42)   (34)   (35)
                            (41)   (51)   (43)   (53)
                            (212)  (123)  (52)   (62)
                                   (213)  (61)   (71)
                                   (231)  (124)  (125)
                                   (312)  (214)  (134)
                                   (321)  (241)  (215)
                                          (313)  (251)
                                          (412)  (314)
                                          (421)  (323)
                                                 (341)
                                                 (413)
                                                 (431)
                                                 (512)
                                                 (521)
                                                 (2123)
                                                 (2312)
                                                 (3212)
		

Crossrefs

The weak version appears to be A189076.
Ranked by positions of strictly decreasing rows in A374683.
The opposite version is A374762.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374680.
- For leaders of weakly increasing runs we have A188920.
- For leaders of weakly decreasing runs we have A374746.
- For leaders of strictly decreasing runs we have A374763.
Types of run-leaders (instead of strictly decreasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly increasing leaders we have A374688.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=prod(i=1,N, 1+(x^i)*prod(j=i+1,N, 1+x^j))); Vec(h)}
    C_x(50) \\ John Tyler Rascoe, Jul 29 2024

Formula

G.f.: Product_{i>0} (1 + (x^i)*Product_{j>i} (1 + x^j)). - John Tyler Rascoe, Jul 29 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 29 2024
Previous Showing 101-110 of 250 results. Next