A340603
Heinz numbers of integer partitions of odd rank.
Original entry on oeis.org
3, 4, 7, 10, 12, 13, 15, 16, 18, 19, 22, 25, 27, 28, 29, 33, 34, 37, 40, 42, 43, 46, 48, 51, 52, 53, 55, 60, 61, 62, 63, 64, 69, 70, 71, 72, 76, 77, 78, 79, 82, 85, 88, 89, 90, 93, 94, 98, 100, 101, 105, 107, 108, 112, 113, 114, 115, 116, 117, 118, 119, 121
Offset: 1
The sequence of partitions with their Heinz numbers begins:
3: (2) 33: (5,2) 63: (4,2,2)
4: (1,1) 34: (7,1) 64: (1,1,1,1,1,1)
7: (4) 37: (12) 69: (9,2)
10: (3,1) 40: (3,1,1,1) 70: (4,3,1)
12: (2,1,1) 42: (4,2,1) 71: (20)
13: (6) 43: (14) 72: (2,2,1,1,1)
15: (3,2) 46: (9,1) 76: (8,1,1)
16: (1,1,1,1) 48: (2,1,1,1,1) 77: (5,4)
18: (2,2,1) 51: (7,2) 78: (6,2,1)
19: (8) 52: (6,1,1) 79: (22)
22: (5,1) 53: (16) 82: (13,1)
25: (3,3) 55: (5,3) 85: (7,3)
27: (2,2,2) 60: (3,2,1,1) 88: (5,1,1,1)
28: (4,1,1) 61: (18) 89: (24)
29: (10) 62: (11,1) 90: (3,2,2,1)
Note: Heinz numbers are given in parentheses below.
These partitions are counted by
A340692.
The case of positive rank is
A340604.
- Rank -
A001222 gives number of prime indices.
A257541 gives the rank of the partition with Heinz number n.
A340653 counts balanced factorizations.
- Odd -
A339890 counts factorizations of odd length.
A340102 counts odd-length factorizations into odd factors.
Cf.
A001221,
A006141,
A056239,
A112798,
A168659,
A200750,
A316413,
A325134,
A340608,
A340609,
A340610.
A340931
Heinz numbers of integer partitions of odd numbers into an odd number of parts.
Original entry on oeis.org
2, 5, 8, 11, 17, 18, 20, 23, 31, 32, 41, 42, 44, 45, 47, 50, 59, 67, 68, 72, 73, 78, 80, 83, 92, 97, 98, 99, 103, 105, 109, 110, 114, 124, 125, 127, 128, 137, 149, 153, 157, 162, 164, 167, 168, 170, 174, 176, 179, 180, 182, 188, 191, 195, 197, 200, 207, 211
Offset: 1
The sequence of terms together with the corresponding partitions begins:
2: (1) 50: (3,3,1) 109: (29)
5: (3) 59: (17) 110: (5,3,1)
8: (1,1,1) 67: (19) 114: (8,2,1)
11: (5) 68: (7,1,1) 124: (11,1,1)
17: (7) 72: (2,2,1,1,1) 125: (3,3,3)
18: (2,2,1) 73: (21) 127: (31)
20: (3,1,1) 78: (6,2,1) 128: (1,1,1,1,1,1,1)
23: (9) 80: (3,1,1,1,1) 137: (33)
31: (11) 83: (23) 149: (35)
32: (1,1,1,1,1) 92: (9,1,1) 153: (7,2,2)
41: (13) 97: (25) 157: (37)
42: (4,2,1) 98: (4,4,1) 162: (2,2,2,2,1)
44: (5,1,1) 99: (5,2,2) 164: (13,1,1)
45: (3,2,2) 103: (27) 167: (39)
47: (15) 105: (4,3,2) 168: (4,2,1,1,1)
Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by
A160786.
The case of where the prime indices are also odd is
A300272.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[PrimeOmega[#]]&&OddQ[Total[primeMS[#]]]&]
A340689
Numbers with a factorization of length 2^k into factors > 1, where k is the greatest factor.
Original entry on oeis.org
1, 16, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 131072, 196608, 262144, 294912, 393216, 442368, 524288, 589824, 663552, 786432, 884736, 995328, 1048576, 1179648, 1327104, 1492992, 1572864, 1769472, 1990656, 2097152, 2239488, 2359296, 2654208, 2985984, 3145728
Offset: 1
The initial terms and a valid factorization of each are:
1 =
16 = 2*2*2*2
384 = 2*2*2*2*2*2*2*3
576 = 2*2*2*2*2*2*3*3
864 = 2*2*2*2*2*3*3*3
1296 = 2*2*2*2*3*3*3*3
1944 = 2*2*2*3*3*3*3*3
2916 = 2*2*3*3*3*3*3*3
4374 = 2*3*3*3*3*3*3*3
6561 = 3*3*3*3*3*3*3*3
131072 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*2*4
196608 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*3*4
262144 = 2*2*2*2*2*2*2*2*2*2*2*2*2*2*4*4
294912 = 2*2*2*2*2*2*2*2*2*2*2*2*2*3*3*4
Partitions of the prescribed type are counted by
A340611.
A047993 counts balanced partitions.
A316439 counts factorizations by product and length.
A340596 counts co-balanced factorizations.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.
Cf.
A106529,
A117409,
A200750,
A325134,
A340386,
A340387,
A340599,
A340607,
A340654,
A340655,
A340656,
A340657.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[1000],Select[facs[#],Length[#]==2^Max@@#&]!={}&]
A340690
Numbers with a factorization whose greatest factor is 2^k, where k is the number of factors.
Original entry on oeis.org
2, 8, 12, 16, 32, 48, 64, 72, 80, 96, 112, 120, 128, 144, 160, 168, 192, 200, 224, 240, 256, 280, 288, 320, 336, 384, 392, 432, 448, 480, 512, 576, 640, 672, 704, 720, 768, 800, 832, 864, 896, 960, 1008, 1024, 1056, 1120, 1152, 1200, 1248, 1280, 1296, 1344
Offset: 1
The initial terms and a valid factorization of each:
2 = 2 168 = 3*7*8 512 = 2*2*2*2*32
8 = 2*4 192 = 2*2*3*16 576 = 2*2*9*16
12 = 3*4 200 = 5*5*8 640 = 2*2*10*16
16 = 4*4 224 = 4*7*8 672 = 2*3*7*16
32 = 2*2*8 240 = 5*6*8 704 = 2*2*11*16
48 = 2*3*8 256 = 2*2*4*16 720 = 3*3*5*16
64 = 2*4*8 280 = 5*7*8 768 = 2*2*2*3*32
72 = 3*3*8 288 = 2*3*3*16 800 = 2*5*5*16
80 = 2*5*8 320 = 2*2*5*16 832 = 2*2*13*16
96 = 2*6*8 336 = 6*7*8 864 = 2*3*9*16
112 = 2*7*8 384 = 2*2*6*16 896 = 2*2*14*16
120 = 3*5*8 392 = 7*7*8 960 = 2*2*15*16
128 = 2*2*2*16 432 = 3*3*3*16 1008 = 3*3*7*16
144 = 3*6*8 448 = 2*2*7*16 1024 = 2*2*2*4*32
160 = 4*5*8 480 = 2*3*5*16 1056 = 2*3*11*16
Partitions of the prescribed type are counted by
A340611.
A047993 counts balanced partitions.
A316439 counts factorizations by product and length.
A340596 counts co-balanced factorizations.
A340597 lists numbers with an alt-balanced factorization.
A340653 counts balanced factorizations.
Cf.
A106529,
A117409,
A200750,
A325134,
A340386,
A340387,
A340599,
A340607,
A340654,
A340655,
A340656,
A340657.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Select[Range[1000],Select[facs[#],2^Length[#]==Max@@#&]!={}&]
A346634
Number of strict odd-length integer partitions of 2n + 1.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0
The a(0) = 1 through a(7) = 14 partitions:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(5,3,1) (6,3,2) (6,5,2) (7,5,3)
(6,2,1) (6,4,1) (7,4,2) (7,6,2)
(7,3,1) (7,5,1) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(9,3,1) (9,4,2)
(10,2,1) (9,5,1)
(10,3,2)
(10,4,1)
(11,3,1)
(12,2,1)
(5,4,3,2,1)
The even version is the even bisection of
A067661.
The case of all odd parts is counted by
A069911 (non-strict:
A078408).
A340385 counts partitions with odd length and maximum, ranked by
A340386.
Other cases of odd length:
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
end:
a:= n-> b(2*n+1$2, 0):
seq(a(n), n=0..80); # Alois P. Heinz, Aug 05 2021
-
Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]
A341448
Heinz numbers of integer partitions of type OO.
Original entry on oeis.org
6, 14, 15, 24, 26, 33, 35, 38, 51, 54, 56, 58, 60, 65, 69, 74, 77, 86, 93, 95, 96, 104, 106, 119, 122, 123, 126, 132, 135, 140, 141, 142, 143, 145, 150, 152, 158, 161, 177, 178, 185, 201, 202, 204, 209, 214, 215, 216, 217, 219, 221, 224, 226, 232, 234, 240
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
6: (2,1) 74: (12,1) 141: (15,2)
14: (4,1) 77: (5,4) 142: (20,1)
15: (3,2) 86: (14,1) 143: (6,5)
24: (2,1,1,1) 93: (11,2) 145: (10,3)
26: (6,1) 95: (8,3) 150: (3,3,2,1)
33: (5,2) 96: (2,1,1,1,1,1) 152: (8,1,1,1)
35: (4,3) 104: (6,1,1,1) 158: (22,1)
38: (8,1) 106: (16,1) 161: (9,4)
51: (7,2) 119: (7,4) 177: (17,2)
54: (2,2,2,1) 122: (18,1) 178: (24,1)
56: (4,1,1,1) 123: (13,2) 185: (12,3)
58: (10,1) 126: (4,2,2,1) 201: (19,2)
60: (3,2,1,1) 132: (5,2,1,1) 202: (26,1)
65: (6,3) 135: (3,2,2,2) 204: (7,2,1,1)
69: (9,2) 140: (4,3,1,1) 209: (8,5)
Note: A-numbers of ranking sequences are in parentheses below.
The case of odd parts, length, and sum is counted by
A078408 (
A300272).
These partitions (for odd n) are counted by
A236914.
A340101 counts factorizations into odd factors.
Cf.
A000700,
A024429,
A027187,
A106529,
A117409,
A174725,
A257541,
A325134,
A339890,
A340102,
A340604.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[Count[primeMS[#],?EvenQ]]&&OddQ[Count[primeMS[#],?OddQ]]&]
A341449
Heinz numbers of integer partitions into odd parts > 1.
Original entry on oeis.org
1, 5, 11, 17, 23, 25, 31, 41, 47, 55, 59, 67, 73, 83, 85, 97, 103, 109, 115, 121, 125, 127, 137, 149, 155, 157, 167, 179, 187, 191, 197, 205, 211, 227, 233, 235, 241, 253, 257, 269, 275, 277, 283, 289, 295, 307, 313, 331, 335, 341, 347, 353, 365, 367, 379, 389
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
1: () 97: (25) 197: (45) 307: (63)
5: (3) 103: (27) 205: (13,3) 313: (65)
11: (5) 109: (29) 211: (47) 331: (67)
17: (7) 115: (9,3) 227: (49) 335: (19,3)
23: (9) 121: (5,5) 233: (51) 341: (11,5)
25: (3,3) 125: (3,3,3) 235: (15,3) 347: (69)
31: (11) 127: (31) 241: (53) 353: (71)
41: (13) 137: (33) 253: (9,5) 365: (21,3)
47: (15) 149: (35) 257: (55) 367: (73)
55: (5,3) 155: (11,3) 269: (57) 379: (75)
59: (17) 157: (37) 275: (5,3,3) 389: (77)
67: (19) 167: (39) 277: (59) 391: (9,7)
73: (21) 179: (41) 283: (61) 401: (79)
83: (23) 187: (7,5) 289: (7,7) 415: (23,3)
85: (7,3) 191: (43) 295: (17,3) 419: (81)
Note: A-numbers of ranking sequences are in parentheses below.
These partitions are counted by
A087897.
The version for factorizations is
A340101.
A112798 lists the prime indices of each positive integer.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[#]&&OddQ[Times@@primeMS[#]]&]
Comments