A342596
Numbers k of the earliest occurrence of widths patterns in the symmetric representation of sigma listed in the ordering of patterns in A342595.
Original entry on oeis.org
1, 3, 6, 9, 18, 72, 21, 15, 78, 30, 60, 120, 81, 162, 648, 1296, 5184, 147, 63, 75, 45, 1014, 666, 150, 90, 10728, 3816, 300, 180, 27744, 504, 360, 1440, 729, 1458, 5832, 11664, 46656, 93312, 373248, 903, 357, 189, 231, 465, 165, 105, 135, 1001, 770, 12246, 4134, 1482, 1326, 1830, 690, 390, 858, 210, 378
Offset: 1
a(17) = 5184 = 2^6 * 3^4 is the smallest number with width pattern (1 2 3 4 5 4 3 2 1).
a(18) = 147 = 3 * 7^2 is the smallest number with width pattern (1 0 1 0 1 0 1 0 1 0 1).
-
(* a341969[] defined in A341969 and lexicographicOrder[] in A342595 *)
a342596[n_] := Module[{listW={}, listK={}, k, w}, For[k=1, k<=n, k++, w=a341969[k]; If[!MemberQ[listW, w], AppendTo[listW, w]; AppendTo[listK, k]]]; Flatten[Map[First, Sort[Transpose[{listK, listW}], lexicographicOrder]]]]
Take[a342596[500000], 60]
A367377
Square array T(n, k), n >= 1, k >= 1, read by antidiagonals, of the least numbers whose symmetric representation of sigma instantiate the unimodal width pattern 1, 2, ..., n, ..., 2, 1 repeated k times separated by instances of width 0.
Original entry on oeis.org
1, 6, 3, 72, 78, 9, 120, 10728, 1014, 21, 5184, 28920, 1598472, 12246, 81, 1440, 53752896, 6969720, 230297976, 171366, 147, 373248, 4157280
Offset: 1
The corner of the table begins:
--------------------------------------------------------------------
Pattern | once twice 3 times 4 times 5 times 6 times
--------------------------------------------------------------------
1 | 1 3 9 21 81 147
121 | 6 78 1014 12246 171366 1922622
12321 | 72 10728 1598472 230297976
1234321 | 120 28920 6969720
123454321 | 5184 53752896
12345654321 | 1440 4157280
1234567654321| 373248
...
T(3, 4) must have 12 odd divisors and as least number must have 2^3 * 3^2 as a factor in order to create the initial width pattern 1 2 3 2 1 0. Therefore, since the next smallest prime larger than 16 * 9 is 149, T(3, 4) is 2^3 * 3^2 * 149^3 or 2^3 * 3^2 * 149 * p for suitable prime p which leads to p = 21467 < 22201 = 149^2.
All other numbers in the table were found by exhaustive computations.
Cf.
A235791,
A237048,
A237270,
A237591,
A237593,
A249223,
A250071,
A262045,
A318843,
A341969,
A342592,
A342594,
A342595,
A342596.
-
t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, Floor[(Sqrt[8n+1]-1)/2]]] (* row n in triangle of A249223 *)
t262045[n_] := Join[t249223[n], Reverse[t249223[n]]] (* row n in triangle of A262045 *)
widthPattern[n_] := Map[First, Split[t262045[n]]]
umw[n_, k_] := Most[Flatten[Table[Join[Range[n], Range[n-1, 0, -1]], k]]]
a367377[{n_, k_}, b_] := NestWhile[#+1&, 1, #
A320066
Numbers k with the property that the symmetric representation of sigma(k) has five parts.
Original entry on oeis.org
63, 81, 99, 117, 153, 165, 195, 231, 255, 273, 285, 325, 345, 375, 425, 435, 459, 475, 525, 561, 575, 625, 627, 665, 693, 725, 735, 775, 805, 819, 825, 875, 897, 925, 975, 1015, 1025, 1075, 1085, 1150, 1175, 1225, 1250, 1295, 1377, 1395, 1421, 1435, 1450, 1479, 1505, 1519, 1550, 1581, 1617, 1645, 1653, 1665
Offset: 1
63 is in the sequence because the 63rd row of A237593 is [32, 11, 6, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 6, 11, 32], and the 62nd row of the same triangle is [32, 11, 5, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 4, 5, 11, 32], therefore between both symmetric Dyck paths there are five parts: [32, 12, 16, 12, 32].
The sums of these parts is 32 + 12 + 16 + 12 + 32 = 104, equaling the sum of the divisors of 63: 1 + 3 + 7 + 9 + 21 + 63 = 104.
(The diagram of the symmetric representation of sigma(63) = 104 is too large to include.)
-
(* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
a320066[n_] := Select[Range[n], partsSRS[#]==5&]
a320066[1665] (* Hartmut F. W. Hoft, Oct 04 2022 *)
A357581
Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.
Original entry on oeis.org
1, 2, 3, 4, 5, 9, 8, 7, 25, 21, 16, 10, 49, 27, 81, 32, 11, 50, 33, 625, 147, 64, 13, 98, 39, 1250, 171, 729, 128, 14, 121, 51, 2401, 207, 15625, 903, 256, 17, 169, 55, 4802, 243, 31250, 987, 3025, 512, 19, 242, 57, 14641, 261, 117649, 1029, 3249, 6875
Offset: 1
The upper left hand 11 X 11 section of the table for a(n) <= 2*10^7:
1 2 3 4 5 6 7 8 9 10 11 ...
----------------------------------------------------------------------
1 3 9 21 81 147 729 903 3025 6875 59049
2 5 25 27 625 171 15625 987 3249 7203 9765625
4 7 49 33 1250 207 31250 1029 4761 13203 19531250
8 10 50 39 2401 243 117649 1113 6561 13527 ...
16 11 98 51 4802 261 235298 1239 7569 14013 ...
32 13 121 55 14641 275 1771561 1265 8649 14499 ...
64 14 169 57 28561 279 3543122 1281 12321 14661 ...
128 17 242 65 29282 333 4826809 1375 14161 15471 ...
256 19 289 69 57122 363 7086244 1407 15129 15633 ...
512 22 338 85 58564 369 9653618 1491 16641 15957 ...
1024 23 361 87 83521 387 19307236 1533 17689 16119 ...
...
Each column k > 1 contains odd and even numbers since, e.g., 5^(k-1) and 2 * 5^(k-1) belong to it.
Column 1: A000079, subsequence of A174973 = A238443, and of column 1 in A240062.
Column 2: A246955, subsequence of A239929; 78 is the smallest number not in A246955.
Column 3: A247687, subsequence of A279102; 15 is the smallest number not in A247687.
Odd numbers in column 3: A001248(k), k > 1.
Column 4: A264102, subsequence of A280107; 75 is the smallest number not in A264102.
Column 5: subsequence of A320066; 63 = A320066(1) is not in column 5.
Numbers in column 5 have the form 2^k * p^4 with p > 2 prime and 0 <= k < floor(log_2(p)).
Odd numbers in column 5: A030514(k), k > 1.
Column 6: subsequence of A320511; 189 is the smallest number not in column 6.
Smallest even number in column 6 is 5050.
Column 7: Numbers have the form 2^k * p^6 with p > 2 prime and 0 <= k < floor(log_2(p)).
Odd numbers in column 7: A030516(k), k > 1.
Numbers in the column numbered with the n-th prime p_n have the form: 2^k * p^(p_n - 1) with p > 2 prime and 0 <= k < floor(log_2(p_n)).
Cf.
A000079,
A001248,
A030514,
A030516,
A174905,
A174973,
A237593,
A238443,
A239929,
A241008,
A241010,
A246955,
A247687,
A264102,
A279102,
A280107,
A318843,
A320066,
A320511,
A341969,
A341970,
A341971.
-
(* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
width1Table[n_, {r_, c_}] := Module[{k, list=Table[{}, c], wL, wLen, pCount, colLen}, For[k=1, k<=n, k++, wL=a341969[k]; wLen=Length[wL]; pCount=(wLen+1)/2; If[pCount<=c&&Length[list[[pCount]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
a357581T[n_, r_] := TableForm[width1Table[n, {r, r}]]
a357581[120000, 10] (* sequence data - first 10 antidiagonals *)
a357581T[120000, 10] (* upper left hand 10x10 array *)
a357581T[20000000, 11] (* 11x11 array - very long computation time *)
A370206
Numbers j whose symmetric representation of sigma(j) consists of two copies of unimodal width pattern 121 separated by 0.
Original entry on oeis.org
78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 348, 354, 366, 372, 402, 426, 438, 444, 474, 492, 498, 516, 534, 564, 582, 606, 618, 636, 642, 654, 678, 708, 732, 762, 786, 804, 820, 822, 834, 852, 860, 876, 894, 906, 940, 942, 948, 978, 996, 1002, 1038, 1060, 1068, 1074
Offset: 1
a(1) = 78 = 2 * 3 * 13 = A262259(3) and SRS(78) consists of 2 unimodal parts of width pattern 121 that meet at diagonal position (54, 54).
a(38) = 4 * 5 * 41 = 820 = A262259(6) is the smallest number in the sequence divisible by 5 and the two parts of SRS(a(38)) meet at diagonal position (570, 570).
Cf.
A082662,
A235791,
A237048,
A237270,
A237271,
A237591,
A237593,
A249223,
A262045,
A262259,
A341969,
A342592,
A342594,
A342595,
A342596,
A367377,
A370205.
-
(* function based on conditions for the odd divisors - fast computation *)
a370206Q[n_] := Module[{f=FactorInteger[n], d=Divisors[NestWhile[#/2&, n, EvenQ[#]&]]}, Length[f]==3&&f[[1, 1]]==2&&Length[d]==4&&f[[2, 1]]<2^(f[[1, 2]]+1)&&2^(f[[1, 2]]+1)*f[[2, 1]]A367377 - slow computation *)
a370206[m_, n_] := Select[Range[m, n], widthPattern[#]=={1, 2, 1, 0, 1, 2, 1}&]
a370206[1,1074]
A320511
Numbers k with the property that the symmetric representation of sigma(k) has six parts.
Original entry on oeis.org
147, 171, 189, 207, 243, 261, 275, 279, 297, 333, 351, 363, 369, 387, 423, 429, 465, 477, 507, 531, 549, 555, 595, 603, 605, 615, 639, 645, 657, 663, 705, 711, 715, 741, 747, 795, 801, 833, 845, 867, 873, 885, 909, 915, 927, 931, 935, 963, 969, 981, 1005, 1017, 1045, 1065, 1071, 1083, 1095, 1105, 1127
Offset: 1
147 is in the sequence because the 147th row of A237593 is [74, 25, 13, 8, 5, 4, 4, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 4, 5, 8, 13, 25, 74], and the 146th row of the same triangle is [74, 25, 12, 8, 6, 4, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 4, 6, 8, 12, 25, 74], therefore between both symmetric Dyck paths there are six parts: [74, 26, 14, 14, 26, 74].
Note that the sum of these parts is 74 + 26 + 14 + 14 + 26 + 74 = 228, equaling the sum of the divisors of 147: 1 + 3 + 7 + 21 + 49 + 147 = 228.
(The diagram of the symmetric representation of sigma(147) = 228 is too large to include.)
Cf.
A000203,
A018303,
A196020,
A235791,
A236104,
A237048,
A237591,
A237593,
A239663,
A239665,
A245092,
A262626,
A296508.
-
(* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
a320511[n_] := Select[Range[n], partsSRS[#]==6&]
a320511[1127] (* Hartmut F. W. Hoft, Oct 04 2022 *)
A347980
a(n) is the smallest odd number k whose symmetric representation of sigma(k) has maximum width n.
Original entry on oeis.org
1, 15, 315, 2145, 3465, 17325, 45045, 51975, 225225, 405405, 315315, 765765, 1576575, 2297295
Offset: 1
The pattern of maximum widths of the parts in the symmetric representation of sigma for the first four terms in the sequence is:
a(n) parts successive widths
1: 1 1
15: 3 1 2 1
315: 3 1 3 1
2145: 7 1 2 3 4 3 2 1
Cf.
A174973,
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A249351 (widths),
A250070,
A262045,
A341969,
A341970,
A341971,
A347979.
-
a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
a347980[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=1, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
a347980[2500000,14] (* long evaluation time *)
A377654
Numbers m^2 for which the center part (containing the diagonal) of its symmetric representation of sigma, SRS(m^2), has width 1 and area m.
Original entry on oeis.org
1, 9, 25, 49, 81, 121, 169, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 4225, 4489, 4761, 5041, 5329, 6241, 6561, 6889, 7225, 7569, 7921, 8649, 9025, 9409, 10201, 10609, 11449, 11881, 12321, 12769, 13225, 14161, 14641, 15129, 15625
Offset: 1
The center part of SRS(a(3)) = SRS(25) has area 5, all 3 parts have width 1, and 25 with 3 divisors also belongs to A244579.
The center part of SRS(a(7)) = SRS(169) has area 13, all 3 parts have width 1, and 169 with 3 divisors also belongs to A244579.
The center part of SRS(a(10)) = SRS(441) has area 21 and width 1, but the maximum width of SRS(441) is 2. Number 441 has 9 divisors and SRS(441) has 7 parts while 21 has 4 divisors and SRS(21) has 4 parts so that 21 is in A244579 while 441 is not.
-
(* t237591 and partsSRS compute rows in A237270 and A237591, respectively *)
(* t249223 and widthPattern are also defined in A376829 *)
row[n_] := Floor[(Sqrt[8 n+1]-1)/2]
t237591[n_] := Map[Ceiling[(n+1)/#-(#+1)/2]-Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[row[n]]]
partsSRS[n_] := Module[{widths=t249223[n], legs=t237591[n], parts, srs}, parts=widths legs; srs=Map[Apply[Plus, #]&, Select[SplitBy[Join[parts, Reverse[parts]], #!=0&], First[#]!=0&]]; srs[[Ceiling[Length[srs]/2]]]-=Last[widths]; srs]
t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, row[n]]]
widthPattern[n_] := Map[First, Split[Join[t249223[n], Reverse[t249223[n]]]]]
centerQ[n_] := Module[{pS=partsSRS[n]}, Sqrt[n]==pS[[(Length[pS]+1)/2]]]/;OddQ[n]
widthQ[n_] := Module[{wP=SplitBy[widthPattern[n], #!=0&]}, wP[[(Length[wP]+1)/2]]]=={1}/;OddQ[n]
a377654[m_, n_] := Select[Map[#^2&, Range[m, n, 2]], centerQ[#]&&widthQ[#]&]/;OddQ[m]
a377654[1, 125]
A347979
a(n) is the smallest even number k whose symmetric representation of sigma(k) has maximum width n.
Original entry on oeis.org
2, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440
Offset: 1
The pattern of maximum widths within the single part of the symmetric representation of sigma for the first four numbers in the sequence is:
a(n) parts successive widths
2: 1 1
6: 1 1 2 1
60: 1 1 2 3 2 3 2 1
120: 1 1 2 3 4 3 2 1
Cf.
A174973,
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A249351 (widths),
A250070,
A262045,
A341969,
A341970,
A341971,
A347980.
-
a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
a347979[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=2, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
a347979[2500000, 33] (* computes a(1..30), a(33); a(31..32) > 2500000 *)
A348171
Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in at least one of its p parts.
Original entry on oeis.org
1, 6, 3, 60, 78, 9, 120, 7620, 15, 21, 360, 28920, 315, 75, 81, 840, 261720, 1326, 495, 63, 147, 3360, 1422120, 3465, 22542, 525, 189, 729, 2520, 22622880, 17325, 44574, 5005, 1275, 357, 903, 5040, 12728520, 45045, 199578, 6435, 16575, 1287, 1197, 3025, 10080, 50858640, 51975, 7734558, 34034, 131835, 2145, 3861, 2499, 6875
Offset: 1
The 10x10 section of the table with dashes indicating values greater than 6*10^7; rows w denote the maximum width and columns p the number of parts in the symmetric representation of sigma(T(w,p)).
w\p | 1 2 3 4 5 6 7 8 9 ...
----------------------------------------------------------------------------
1 | 1 3 9 21 81 147 729 903 3025
2 | 6 78 15 75 63 189 357 1197 2499
3 | 60 7620 315 495 525 1275 1287 3861 3591
4 | 120 28920 1326 22542 5005 16575 2145 29325 11583
5 | 360 261720 3465 44574 6435 131835 76125 24225 82593
6 | 840 1422120 17325 199578 34034 83655 196707 468027 62985
7 | 3360 22622880 45045 7734558 153153 442442 314925 1108965 471975
8 | 2520 12728520 51975 - 205275 2067065 1429275 2359875 557175
9 | 5040 50858640 225225 - 646646 2863718 2395197 5353725 2785875
10| 10080 - 405405 - 1990989 2124694 6500375 36535499 7753875
...
The symmetric representation of sigma for T(2,3) = 15 consists of the three parts (8, 8, 8) of maximum widths (1, 2, 1), and that of T(3,3) = 315 consists of the three parts (158, 308, 158) of maximum widths (1, 3, 1).
Cf.
A237048,
A237270,
A237271,
A237591,
A237593,
A238443,
A239663,
A249223,
A250070,
A262045,
A318843,
A341969,
A341970,
A341971,
A347979,
A347980,
A348142.
-
(* function a341969 is defined in A341969 *)
a348171[n_, {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], # != 0 &], #[[1]] != 0 &]]; c = Length[s]; u = Max[s]; If[u<=w && c<=p, If[list[[u, c]] == 0, list[[u, c]] = k ]]]; list]
table=a348171[60000000, {15, 15}] (* 15x15 table; very long computation time *)
p[n_] := n-row[n-1](row[n-1]+1)/2
w[n_] := row[n-1]-p[n]+2
Map[table[[w[#], p[#]]]&, Range[55]] (* sequence data *)
Comments