cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A342596 Numbers k of the earliest occurrence of widths patterns in the symmetric representation of sigma listed in the ordering of patterns in A342595.

Original entry on oeis.org

1, 3, 6, 9, 18, 72, 21, 15, 78, 30, 60, 120, 81, 162, 648, 1296, 5184, 147, 63, 75, 45, 1014, 666, 150, 90, 10728, 3816, 300, 180, 27744, 504, 360, 1440, 729, 1458, 5832, 11664, 46656, 93312, 373248, 903, 357, 189, 231, 465, 165, 105, 135, 1001, 770, 12246, 4134, 1482, 1326, 1830, 690, 390, 858, 210, 378
Offset: 1

Views

Author

Hartmut F. W. Hoft, Mar 16 2021

Keywords

Comments

This sequence is the companion to A342595 in that a(n) is the smallest number k that has row n of the table in A342595 as its width pattern in the symmetric representation of sigma(k).
The number of possible width patterns of length n occurring up to the diagonal in symmetric representations of sigma is A001405(n). Those are realized for n <= 4. For larger n the actual number of width patterns is smaller. Only p symmetric patterns of length 2p-1 are realizable when a number has p odd divisors and p is prime. Patterns such as 1 0 1 2 3 ... k-1 k k-1 ... 3 2 1 0 1, k >= 4, i.e., numbers with at least 6 odd divisors, cannot be realized as width patterns in the symmetric representation of sigma. If n = 2^s * p * q^2, s >= 0, p < q odd primes, then 2^(s+1) < p and row(n) < 2^(s+1) * p must hold which leads to the contradiction q^2 < p^2; if n = 2^s * p^2 * q, s >= 0, p < q odd primes, then again 2^(s+1) < p and row(n) < 2^(s+1) * p must hold which leads to the contradiction p * q < p^2.

Examples

			a(17) = 5184 = 2^6 * 3^4 is the smallest number with width pattern (1 2 3 4 5 4 3 2 1).
a(18) = 147 = 3 * 7^2 is the smallest number with width pattern (1 0 1 0 1 0 1 0 1 0 1).
		

Crossrefs

Programs

  • Mathematica
    (* a341969[] defined in A341969 and lexicographicOrder[] in A342595 *)
    a342596[n_] := Module[{listW={}, listK={}, k, w}, For[k=1, k<=n, k++, w=a341969[k]; If[!MemberQ[listW, w], AppendTo[listW, w]; AppendTo[listK, k]]]; Flatten[Map[First, Sort[Transpose[{listK, listW}], lexicographicOrder]]]]
    Take[a342596[500000], 60]

A367377 Square array T(n, k), n >= 1, k >= 1, read by antidiagonals, of the least numbers whose symmetric representation of sigma instantiate the unimodal width pattern 1, 2, ..., n, ..., 2, 1 repeated k times separated by instances of width 0.

Original entry on oeis.org

1, 6, 3, 72, 78, 9, 120, 10728, 1014, 21, 5184, 28920, 1598472, 12246, 81, 1440, 53752896, 6969720, 230297976, 171366, 147, 373248, 4157280
Offset: 1

Views

Author

Hartmut F. W. Hoft, Nov 15 2023

Keywords

Comments

The numbers T(n, 1) instantiating a single unimodal pattern of width n form A250071(n). This first column is not increasing since T(5, 1) = 5184 > 1440 = T(6, 1).
The numbers T(1, k) instantiating the repeating unimodal patterns 1, 1, 0, 1, ..., 1, 0, 1, 0, ..., 0, 1, 0, 1, ... of width 1 form A318843(k). This first row is not increasing since T(1, 11) = 59049 > 29095 = T(1, 12).
The rows in the table are infinite since the numbers T(n, 1) * p^(k-1) >= T(n, k), with p the smallest prime greater than 2 * T(n, 1), instantiate the width pattern for T(n, k), though equality need not hold, as T(1, 4) = 21 = 3 * 7 < 1 * 3^3 = 27 demonstrates.
Conjecture 1: None of the rows and columns are increasing.
Conjecture 2: T(n, p) = T(n, 1) * A151800(2*T(n, 1))^(p-1) for n >= 1 and primes p.
Conjecture 3: T(p, q), p and q primes, is a record for its upper left hand rectangle in the table. Only one prime number index generally is not sufficient as the inequality 4157280 = T(6, 2) < 5 * 10^6 < T(5, 2) shows.

Examples

			The corner of the table begins:
  --------------------------------------------------------------------
     Pattern   |   once    twice  3 times   4 times  5 times  6 times
  --------------------------------------------------------------------
        1      |      1        3        9        21       81      147
       121     |      6       78     1014     12246   171366  1922622
      12321    |     72    10728  1598472 230297976
     1234321   |    120    28920  6969720
    123454321  |   5184 53752896
   12345654321 |   1440  4157280
  1234567654321| 373248
  ...
T(3, 4) must have 12 odd divisors and as least number must have 2^3 * 3^2 as a factor in order to create the initial width pattern 1 2 3 2 1 0. Therefore, since the next smallest prime larger than 16 * 9 is 149, T(3, 4) is 2^3 * 3^2 * 149^3 or 2^3 * 3^2 * 149 * p for suitable prime p which leads to p = 21467 < 22201 = 149^2.
All other numbers in the table were found by exhaustive computations.
		

Crossrefs

Programs

  • Mathematica
    t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, Floor[(Sqrt[8n+1]-1)/2]]] (* row n in triangle of A249223 *)
    t262045[n_] := Join[t249223[n], Reverse[t249223[n]]] (* row n in triangle of A262045 *)
    widthPattern[n_] := Map[First, Split[t262045[n]]]
    umw[n_, k_] := Most[Flatten[Table[Join[Range[n], Range[n-1, 0, -1]], k]]]
    a367377[{n_, k_}, b_] := NestWhile[#+1&, 1, #
    				

A320066 Numbers k with the property that the symmetric representation of sigma(k) has five parts.

Original entry on oeis.org

63, 81, 99, 117, 153, 165, 195, 231, 255, 273, 285, 325, 345, 375, 425, 435, 459, 475, 525, 561, 575, 625, 627, 665, 693, 725, 735, 775, 805, 819, 825, 875, 897, 925, 975, 1015, 1025, 1075, 1085, 1150, 1175, 1225, 1250, 1295, 1377, 1395, 1421, 1435, 1450, 1479, 1505, 1519, 1550, 1581, 1617, 1645, 1653, 1665
Offset: 1

Views

Author

Omar E. Pol, Oct 05 2018

Keywords

Comments

Those numbers in this sequence with only parts of width 1 in their symmetric representation of sigma form column 5 in the table of A357581. - Hartmut F. W. Hoft, Oct 04 2022

Examples

			63 is in the sequence because the 63rd row of A237593 is [32, 11, 6, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 4, 6, 11, 32], and the 62nd row of the same triangle is [32, 11, 5, 4, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 4, 5, 11, 32], therefore between both symmetric Dyck paths there are five parts: [32, 12, 16, 12, 32].
The sums of these parts is 32 + 12 + 16 + 12 + 32 = 104, equaling the sum of the divisors of 63: 1 + 3 + 7 + 9 + 21 + 63 = 104.
(The diagram of the symmetric representation of sigma(63) = 104 is too large to include.)
		

Crossrefs

Column 5 of A240062.
Cf. A000203, A018267, A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts).

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    a320066[n_] := Select[Range[n], partsSRS[#]==5&]
    a320066[1665] (* Hartmut F. W. Hoft, Oct 04 2022 *)

A357581 Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 7, 25, 21, 16, 10, 49, 27, 81, 32, 11, 50, 33, 625, 147, 64, 13, 98, 39, 1250, 171, 729, 128, 14, 121, 51, 2401, 207, 15625, 903, 256, 17, 169, 55, 4802, 243, 31250, 987, 3025, 512, 19, 242, 57, 14641, 261, 117649, 1029, 3249, 6875
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2022

Keywords

Comments

This sequence is a permutation of A174905. Numbers in the even numbered columns of the table form A241008 and those in the odd numbered columns form A241010. The first row of the table is A318843.
This sequence is a subsequence of A240062 and each column in this sequence is a subsequence in the respective column of A240062.

Examples

			The upper left hand 11 X 11 section of the table for a(n) <= 2*10^7:
     1   2    3   4      5    6         7     8      9     10        11 ...
  ----------------------------------------------------------------------
     1   3    9  21     81  147       729   903   3025   6875     59049
     2   5   25  27    625  171     15625   987   3249   7203   9765625
     4   7   49  33   1250  207     31250  1029   4761  13203  19531250
     8  10   50  39   2401  243    117649  1113   6561  13527       ...
    16  11   98  51   4802  261    235298  1239   7569  14013       ...
    32  13  121  55  14641  275   1771561  1265   8649  14499       ...
    64  14  169  57  28561  279   3543122  1281  12321  14661       ...
   128  17  242  65  29282  333   4826809  1375  14161  15471       ...
   256  19  289  69  57122  363   7086244  1407  15129  15633       ...
   512  22  338  85  58564  369   9653618  1491  16641  15957       ...
  1024  23  361  87  83521  387  19307236  1533  17689  16119       ...
  ...
Each column k > 1 contains odd and even numbers since, e.g., 5^(k-1) and 2 * 5^(k-1) belong to it.
Column 1: A000079, subsequence of A174973 = A238443, and of column 1 in A240062.
Column 2: A246955, subsequence of A239929; 78 is the smallest number not in A246955.
Column 3: A247687, subsequence of A279102; 15 is the smallest number not in A247687.
  Odd numbers in column 3: A001248(k), k > 1.
Column 4: A264102, subsequence of A280107; 75 is the smallest number not in A264102.
Column 5: subsequence of A320066; 63 = A320066(1) is not in column 5.
  Numbers in column 5 have the form 2^k * p^4 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 5: A030514(k), k > 1.
Column 6: subsequence of A320511; 189 is the smallest number not in column 6.
  Smallest even number in column 6 is 5050.
Column 7: Numbers have the form 2^k * p^6 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 7: A030516(k), k > 1.
Numbers in the column numbered with the n-th prime p_n have the form: 2^k * p^(p_n - 1) with p > 2 prime and 0 <= k < floor(log_2(p_n)).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    width1Table[n_, {r_, c_}] := Module[{k, list=Table[{}, c], wL, wLen, pCount, colLen}, For[k=1, k<=n, k++, wL=a341969[k]; wLen=Length[wL]; pCount=(wLen+1)/2; If[pCount<=c&&Length[list[[pCount]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a357581T[n_, r_] := TableForm[width1Table[n, {r, r}]]
    a357581[120000, 10] (* sequence data - first 10 antidiagonals *)
    a357581T[120000, 10] (* upper left hand 10x10 array *)
    a357581T[20000000, 11] (* 11x11 array - very long computation time *)

A370206 Numbers j whose symmetric representation of sigma(j) consists of two copies of unimodal width pattern 121 separated by 0.

Original entry on oeis.org

78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 348, 354, 366, 372, 402, 426, 438, 444, 474, 492, 498, 516, 534, 564, 582, 606, 618, 636, 642, 654, 678, 708, 732, 762, 786, 804, 820, 822, 834, 852, 860, 876, 894, 906, 940, 942, 948, 978, 996, 1002, 1038, 1060, 1068, 1074
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 11 2024

Keywords

Comments

Each term has 4 odd divisors and has the form 2^k * p * q, k > 0, p and q prime, 2 < p < 2^(k+1) < 2^(k+1) * p < q. The inequalities ensure that the four 1's in row a(n) of triangle in A237048 are in positions 1, p, 2^(k+1), and 2^(k+1) * p <= floor( (sqrt(8*a(n)+1) - 1)/2 ) < q and establish width pattern 1210 in SRS(a(n)) up to the diagonal. Also since p < 2^(k+1), numbers of the form 2^k * p^3 force p^2 < 2^(k+1) * p which creates a width pattern of the form 1212121.
When a(n) satisfies q = 2^(k+1) * p + 1 it is the smallest number with prime factor p whose two parts of SRS(a(n)) meet at the diagonal since in this case 2^(k+1) * p = floor( (sqrt(8*a(n)+1) - 1)/2 ). The first 4 numbers with p = 3 are 2* 3 * 13 = 78, 2^4 * 3 * 97 = 4656, 2^5 * 3 * 193 = 18528 and 2^7 * 3 * 769 = 295296. The smallest number with prime factor p = 47 has 355 digits.
Conjecture: The subsequence of numbers m whose two parts of SRS(m) meet at the diagonal is infinite.

Examples

			a(1) = 78 = 2 * 3 * 13 = A262259(3) and SRS(78) consists of 2 unimodal parts of width pattern 121 that meet at diagonal position (54, 54).
a(38) = 4 * 5 * 41 = 820 = A262259(6)  is the smallest number in the sequence divisible by 5 and the two parts of SRS(a(38)) meet at diagonal position (570, 570).
		

Crossrefs

Programs

  • Mathematica
    (* function based on conditions for the odd divisors - fast computation *)
    a370206Q[n_] := Module[{f=FactorInteger[n], d=Divisors[NestWhile[#/2&, n, EvenQ[#]&]]}, Length[f]==3&&f[[1, 1]]==2&&Length[d]==4&&f[[2, 1]]<2^(f[[1, 2]]+1)&&2^(f[[1, 2]]+1)*f[[2, 1]]A367377 - slow computation *)
    a370206[m_, n_] :=  Select[Range[m, n], widthPattern[#]=={1, 2, 1, 0, 1, 2, 1}&]
    a370206[1,1074]

A320511 Numbers k with the property that the symmetric representation of sigma(k) has six parts.

Original entry on oeis.org

147, 171, 189, 207, 243, 261, 275, 279, 297, 333, 351, 363, 369, 387, 423, 429, 465, 477, 507, 531, 549, 555, 595, 603, 605, 615, 639, 645, 657, 663, 705, 711, 715, 741, 747, 795, 801, 833, 845, 867, 873, 885, 909, 915, 927, 931, 935, 963, 969, 981, 1005, 1017, 1045, 1065, 1071, 1083, 1095, 1105, 1127
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2018

Keywords

Comments

Those numbers in this sequence with only parts of width 1 in their symmetric representation of sigma form column 6 in the table of A357581. - Hartmut F. W. Hoft, Oct 04 2022

Examples

			147 is in the sequence because the 147th row of A237593 is [74, 25, 13, 8, 5, 4, 4, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 4, 4, 5, 8, 13, 25, 74], and the 146th row of the same triangle is [74, 25, 12, 8, 6, 4, 3, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 4, 6, 8, 12, 25, 74], therefore between both symmetric Dyck paths there are six parts: [74, 26, 14, 14, 26, 74].
Note that the sum of these parts is 74 + 26 + 14 + 14 + 26 + 74 = 228, equaling the sum of the divisors of 147: 1 + 3 + 7 + 21 + 49 + 147 = 228.
(The diagram of the symmetric representation of sigma(147) = 228 is too large to include.)
		

Crossrefs

Column 6 of A240062.
Cf. A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts), A320066 (five parts).

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    partsSRS[n_] := Length[Select[SplitBy[a341969[n], #!=0&], #[[1]]!=0&]]
    a320511[n_] := Select[Range[n], partsSRS[#]==6&]
    a320511[1127] (* Hartmut F. W. Hoft, Oct 04 2022 *)

A347980 a(n) is the smallest odd number k whose symmetric representation of sigma(k) has maximum width n.

Original entry on oeis.org

1, 15, 315, 2145, 3465, 17325, 45045, 51975, 225225, 405405, 315315, 765765, 1576575, 2297295
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 22 2021

Keywords

Comments

The sequence is not increasing with the maximum width of the symmetric representation just like A347979.
Observation: a(2)..a(14) ending in 5. - Omar E. Pol, Sep 23 2021

Examples

			The pattern of maximum widths of the parts in the symmetric representation of sigma for the first four terms in the sequence is:
   a(n) parts  successive widths
     1:   1          1
    15:   3        1 2 1
   315:   3        1 3 1
  2145:   7    1 2 3 4 3 2 1
		

Crossrefs

Programs

  • Mathematica
    a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
    a347980[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=1, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
    a347980[2500000,14] (* long evaluation time *)

A377654 Numbers m^2 for which the center part (containing the diagonal) of its symmetric representation of sigma, SRS(m^2), has width 1 and area m.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1369, 1521, 1681, 1849, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 4225, 4489, 4761, 5041, 5329, 6241, 6561, 6889, 7225, 7569, 7921, 8649, 9025, 9409, 10201, 10609, 11449, 11881, 12321, 12769, 13225, 14161, 14641, 15129, 15625
Offset: 1

Views

Author

Hartmut F. W. Hoft, Nov 03 2024

Keywords

Comments

Since for numbers m^2 in the sequence the width at the diagonal of SRS(m^2) is 1, the area m of its center part is odd so that this sequence is a proper subsequence of A016754 and since SRS(m^2) has an odd number of parts it is a proper subsequence of A319529. The smallest odd square not in this sequence is 225 = 15^2. SRS(225) is {113, 177, 113}, its center part has maximum width 2, its width at the diagonal is 1.
The k+1 parts of SRS(p^(2k)), p an odd prime and k >= 0, through the diagonal including the center part have areas (p^(2k-i) + p^i)/2 for 0 <= i <= k. They form a strictly decreasing sequence. Since p^(2k) has 2k+1 divisors and SRS(p^(2k)) has 2k+1 parts, all of width 1 (A357581), the even powers of odd primes form a proper subsequence of A244579. For the subsequence of squares of odd primes p, SRS(p^2) consists of the 3 parts { (p^2 + 1)/2, p, (p^2 + 1)/2 } see A001248, A247687 and A357581.
The areas of the parts of SRS(m^2) need not be in descending order through the diagonal as a(112) = 275^2 = 75625 with SRS(75625) = (37813, 7565, 3443, 1525, 715, 738, 275, 738, 715, 1525, 3443, 7565, 37813) demonstrates.
An equivalent description of the sequence is: The center part of SRS(m^2) has width 1, m is odd, and A249223(m^2, m-1) = 0.
Conjectures (true for all a(n) <= 10^8):
(1) The central part of SRS(a(n)) is the minimum of all parts of SRS(a(n)), 1 <= n.
(2) The terms in this sequence are the squares of the terms in A244579.

Examples

			The center part of SRS(a(3)) = SRS(25) has area 5, all 3 parts have width 1, and 25 with 3 divisors also belongs to A244579.
The center part of SRS(a(7)) = SRS(169) has area 13, all 3 parts have width 1, and 169 with 3 divisors also belongs to A244579.
The center part of SRS(a(10)) = SRS(441) has area 21 and width 1, but the maximum width of SRS(441) is 2. Number 441 has 9 divisors and SRS(441) has 7 parts while 21 has 4 divisors and SRS(21) has 4 parts so that 21 is in A244579 while 441 is not.
		

Crossrefs

Programs

  • Mathematica
    (* t237591 and partsSRS compute rows in A237270 and A237591, respectively *)
    (* t249223 and widthPattern are also defined in A376829 *)
    row[n_] := Floor[(Sqrt[8 n+1]-1)/2]
    t237591[n_] := Map[Ceiling[(n+1)/#-(#+1)/2]-Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[row[n]]]
    partsSRS[n_] := Module[{widths=t249223[n], legs=t237591[n], parts, srs}, parts=widths legs; srs=Map[Apply[Plus, #]&, Select[SplitBy[Join[parts, Reverse[parts]], #!=0&], First[#]!=0&]]; srs[[Ceiling[Length[srs]/2]]]-=Last[widths]; srs]
    t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, row[n]]]
    widthPattern[n_] := Map[First, Split[Join[t249223[n], Reverse[t249223[n]]]]]
    centerQ[n_] := Module[{pS=partsSRS[n]}, Sqrt[n]==pS[[(Length[pS]+1)/2]]]/;OddQ[n]
    widthQ[n_] := Module[{wP=SplitBy[widthPattern[n], #!=0&]}, wP[[(Length[wP]+1)/2]]]=={1}/;OddQ[n]
    a377654[m_, n_] := Select[Map[#^2&, Range[m, n, 2]], centerQ[#]&&widthQ[#]&]/;OddQ[m]
    a377654[1, 125]

A347979 a(n) is the smallest even number k whose symmetric representation of sigma(k) has maximum width n.

Original entry on oeis.org

2, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440
Offset: 1

Views

Author

Hartmut F. W. Hoft, Sep 22 2021

Keywords

Comments

For the 30 known terms the symmetric representation of sigma consists of a single part, i.e., this is a subsequence of A174973 = A238443.
The sequence is not increasing with the maximum width of the symmetric representation of sigma.
Also a(33) = 2162160 is the only further number in the sequence less than 2500000.

Examples

			The pattern of maximum widths within the single part of the symmetric representation of sigma for the first four numbers in the sequence is:
  a(n) parts successive widths
    2:   1           1
    6:   1         1 2 1
   60:   1     1 2 3 2 3 2 1
  120:   1     1 2 3 4 3 2 1
		

Crossrefs

Programs

  • Mathematica
    a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
    a347979[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=2, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
    a347979[2500000, 33] (* computes a(1..30), a(33); a(31..32) > 2500000 *)

Formula

It appears that a(n) = A250070(n) if n >= 2.

A348171 Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in at least one of its p parts.

Original entry on oeis.org

1, 6, 3, 60, 78, 9, 120, 7620, 15, 21, 360, 28920, 315, 75, 81, 840, 261720, 1326, 495, 63, 147, 3360, 1422120, 3465, 22542, 525, 189, 729, 2520, 22622880, 17325, 44574, 5005, 1275, 357, 903, 5040, 12728520, 45045, 199578, 6435, 16575, 1287, 1197, 3025, 10080, 50858640, 51975, 7734558, 34034, 131835, 2145, 3861, 2499, 6875
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2021

Keywords

Comments

The first row of the table below is A318843 and the first column is A250070.
T(1,k+1) <= 3^k, for all k>=0, since for k=2j the (j+1)-st part in the symmetric representation of sigma(3^k) extends across the diagonal, and for k=2j+1 the (j+1)-st part is completed before the diagonal.
The data computed so far for a partially filled table of 15 rows and 15 columns, show that all rows, all columns (except column 4 for n <= 6 *10^7), and the diagonal are nonmonotonic.

Examples

			The 10x10 section of the table with dashes indicating values greater than 6*10^7; rows w denote the maximum width and columns p the number of parts in the symmetric representation of sigma(T(w,p)).
w\p | 1     2        3      4       5       6       7       8        9   ...
----------------------------------------------------------------------------
  1 | 1     3        9      21      81      147     729     903      3025
  2 | 6     78       15     75      63      189     357     1197     2499
  3 | 60    7620     315    495     525     1275    1287    3861     3591
  4 | 120   28920    1326   22542   5005    16575   2145    29325    11583
  5 | 360   261720   3465   44574   6435    131835  76125   24225    82593
  6 | 840   1422120  17325  199578  34034   83655   196707  468027   62985
  7 | 3360  22622880 45045  7734558 153153  442442  314925  1108965  471975
  8 | 2520  12728520 51975     -    205275  2067065 1429275 2359875  557175
  9 | 5040  50858640 225225    -    646646  2863718 2395197 5353725  2785875
  10| 10080    -     405405    -    1990989 2124694 6500375 36535499 7753875
   ...
The symmetric representation of sigma for T(2,3) = 15 consists of the three parts (8, 8, 8) of maximum widths (1, 2, 1), and that of T(3,3) = 315 consists of the three parts (158, 308, 158) of maximum widths (1, 3, 1).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    a348171[n_,  {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], # != 0 &], #[[1]] != 0 &]]; c = Length[s]; u = Max[s]; If[u<=w && c<=p, If[list[[u, c]] == 0, list[[u, c]] = k ]]]; list]
    table=a348171[60000000, {15, 15}] (* 15x15 table; very long computation time *)
    p[n_] := n-row[n-1](row[n-1]+1)/2
    w[n_] := row[n-1]-p[n]+2
    Map[table[[w[#], p[#]]]&, Range[55]] (* sequence data *)

Formula

a((w+p-2)(w+p-1)/2 + p) = T(w,p), for all w, p >= 1.
T(w(n), p(n)) = a(n), for all n >= 1, where p(n) = n - r(n-1) * (r(n-1) + 1)/2, w(n) = r(n-1) - p(n) + 2, and r(n) = floor((sqrt(8*n+1) - 1)/2).
Previous Showing 11-20 of 36 results. Next