cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-48 of 48 results.

A343941 Number of strict integer partitions of 2n with reverse-alternating sum 4.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 3, 3, 4, 5, 7, 8, 10, 11, 14, 15, 18, 20, 23, 25, 29, 31, 35, 38, 42, 45, 50, 53, 58, 62, 67, 71, 77, 81, 87, 92, 98, 103, 110, 115, 122, 128, 135, 141, 149, 155, 163, 170, 178, 185, 194, 201, 210, 218, 227, 235, 245, 253, 263, 272, 282, 291, 302
Offset: 0

Views

Author

Gus Wiseman, Jun 09 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts, so a(n) is the number of strict odd-length integer partitions of 2n whose conjugate has exactly 4 odd parts (first example). By conjugation, this is also the number partitions of 2n covering an initial interval and containing exactly four odd parts, one of which is the greatest (second example).

Examples

			The a(2) = 1 through a(12) = 10 strict partitions (empty column indicated by dot, A..D = 10..13):
  4   .  521   532   543   653   763     873     983     A93     BA3
               631   642   752   862     972     A82     B92     CA2
                     741   851   961     A71     B81     C91     DA1
                                 64321   65421   65432   76432   76542
                                         75321   75431   76531   86541
                                                 76421   86431   87432
                                                 86321   87421   87531
                                                         97321   97431
                                                                 98421
                                                                 A8321
The a(2) = 1 through a(8) = 5 partitions covering an initial interval:
  1111  .  32111   33211    33321     333221     543211      543321
                   322111   332211    3322211    3332221     5432211
                            3222111   32222111   33222211    33322221
                                                 322222111   332222211
                                                             3222222111
		

Crossrefs

The non-reverse non-strict version is A000710.
The non-reverse version is A026810.
The non-strict version is column k = 2 of A344610.
This is column k = 2 of A344649.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&sats[#]==4&]],{n,0,30,2}]

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A345961 Numbers whose prime indices have reverse-alternating sum 2.

Original entry on oeis.org

3, 10, 12, 21, 27, 30, 40, 48, 55, 70, 75, 84, 90, 91, 108, 120, 147, 154, 160, 187, 189, 192, 210, 220, 243, 247, 250, 270, 280, 286, 300, 336, 360, 363, 364, 391, 432, 442, 462, 480, 490, 495, 507, 525, 551, 588, 616, 630, 640, 646, 675, 713, 748, 750, 756
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. Of course, the reverse-alternating sum of prime indices is also the alternating sum of reversed prime indices.
Also numbers with exactly two odd conjugate prime indices. The restriction to odd omega is A345960, and the restriction to even omega is A345962.

Examples

			The initial terms and their prime indices:
    3: {2}
   10: {1,3}
   12: {1,1,2}
   21: {2,4}
   27: {2,2,2}
   30: {1,2,3}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   55: {3,5}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
   91: {4,6}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
		

Crossrefs

Below we use k to indicate reverse-alternating sum.
The k > 0 version is A000037.
These multisets are counted by A000097.
The k = 0 version is A000290, counted by A000041.
These partitions are counted by A120452 (negative: A344741).
These are the positions of 2's in A344616.
The k = -1 version is A345912.
The k = 1 version is A345958.
The unreversed version is A345960 (negative: A345962).
A000070 counts partitions with alternating sum 1.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A027187 counts partitions with reverse-alternating sum <= 0.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A088218 also counts compositions with alternating sum 0, ranked by A344619.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices.
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[100],sats[primeMS[#]]==2&]

A347465 Numbers whose multiset of prime indices has alternating product > 1.

Original entry on oeis.org

3, 5, 7, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 30, 31, 37, 41, 42, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 120, 124, 125, 127
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
All terms have odd bigomega (A001222).
Also Heinz numbers integer partitions with reverse-alternating product > 1.

Examples

			The terms and their prime indices begin:
      3: {2}         37: {12}            68: {1,1,7}
      5: {3}         41: {13}            70: {1,3,4}
      7: {4}         42: {1,2,4}         71: {20}
     11: {5}         43: {14}            73: {21}
     12: {1,1,2}     44: {1,1,5}         75: {2,3,3}
     13: {6}         45: {2,2,3}         76: {1,1,8}
     17: {7}         47: {15}            78: {1,2,6}
     19: {8}         48: {1,1,1,1,2}     79: {22}
     20: {1,1,3}     52: {1,1,6}         80: {1,1,1,1,3}
     23: {9}         53: {16}            83: {23}
     27: {2,2,2}     59: {17}            89: {24}
     28: {1,1,4}     61: {18}            92: {1,1,9}
     29: {10}        63: {2,2,4}         97: {25}
     30: {1,2,3}     66: {1,2,5}         99: {2,2,5}
     31: {11}        67: {19}           101: {26}
		

Crossrefs

The squarefree case is A030059 without 2.
The reverse version is A028983, counted by A119620.
The opposite version (< 1 instead of > 1) is A119899.
Factorizations of this type are counted by A339890, reverse A347705.
The weak version (>= 1 instead of > 1) is A344609.
Partitions of this type are counted by A347449, reverse A347448.
The complement is A347450, counted by A339846 or A347443.
Allowing any integer reverse-alternating product gives A347454.
Allowing any integer alternating product gives A347457.
A335433 ranks inseparable partitions, complement A335448.
A347446 counts partitions with integer alternating product, reverse A347445.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],altprod[primeMS[#]]>1&]

A304620 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k) / Product_{j=1..2*k} (1 - x^j).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 15, 22, 34, 48, 70, 97, 137, 186, 255, 341, 459, 605, 800, 1042, 1359, 1751, 2256, 2879, 3672, 4645, 5869, 7367, 9234, 11508, 14319, 17730, 21916, 26975, 33143, 40570, 49575, 60376, 73402, 88974, 107666, 129933, 156546, 188148, 225767, 270300, 323115, 385453
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A027187.
From Gus Wiseman, Jun 26 2021: (Start)
Also the number of integer partitions of 2n+1 with odd greatest part and alternating sum 1, where the alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i, which is equal to the number of odd parts in the conjugate partition. For example, the a(0) = 1 through a(6) = 15 partitions are:
1 111 32 331 54 551 76
11111 3211 3222 3332 5422
1111111 3321 5411 5521
33111 33221 33331
321111 322211 55111
111111111 332111 322222
3311111 332221
32111111 333211
11111111111 541111
3322111
32221111
33211111
331111111
3211111111
1111111111111
Also odd-length partitions of 2n+1 with exactly one odd part.
(End)

Crossrefs

First differences are A027187.
The version for even instead of odd greatest part is A306145.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A000070 counts partitions with alternating sum 1.
A067661 counts strict partitions of even length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k)/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 47; CoefficientList[Series[(1 + EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman, Jun 26 2021 *)

Formula

a(n) = A000070(n) - A306145(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Aug 20 2018

A306145 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k+1) / Product_{j=1..2*k+1} (1 - x^j).

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 15, 23, 33, 49, 69, 98, 135, 187, 253, 343, 456, 607, 797, 1045, 1355, 1755, 2252, 2884, 3666, 4651, 5863, 7375, 9226, 11517, 14310, 17741, 21904, 26988, 33130, 40586, 49558, 60394, 73383, 88996, 107642, 129958, 156519, 188178, 225734, 270335, 323078, 385494
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A027193.
From Gus Wiseman, Jun 23 2021: (Start)
Also the number of even-length integer partitions of 2n+1 with exactly one odd part. For example, the a(1) = 1 through a(5) = 10 partitions are:
(2,1) (3,2) (4,3) (5,4) (6,5)
(4,1) (5,2) (6,3) (7,4)
(6,1) (7,2) (8,3)
(2,2,2,1) (8,1) (9,2)
(3,2,2,2) (10,1)
(4,2,2,1) (4,3,2,2)
(4,4,2,1)
(5,2,2,2)
(6,2,2,1)
(2,2,2,2,2,1)
Also partitions of 2n+1 with even greatest part and alternating sum 1.
(End)

Crossrefs

First differences are A027193.
The ordered version appears to be A087447 modulo initial terms.
The version for odd instead of even-length partitions is A304620.
The case of strict partitions is A318156.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions of even length, with strict case A067661.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k + 1)/Product[(1 - x^j), {j, 1, 2 k + 1}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 47; CoefficientList[Series[(1 - EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman, Jun 23 2021 *)

Formula

a(n) = A000070(n) - A304620(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Aug 20 2018

A318156 Expansion of (1/(1 - x)) * Sum_{k>=1} x^(k*(2*k-1)) / Product_{j=1..2*k-1} (1 - x^j).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 55, 69, 85, 104, 127, 154, 186, 224, 268, 320, 381, 452, 534, 630, 741, 869, 1017, 1187, 1382, 1606, 1862, 2155, 2489, 2869, 3301, 3792, 4349, 4979, 5692, 6497, 7405, 8429, 9581, 10876, 12331, 13963, 15792, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067659.

Examples

			From _Gus Wiseman_, Jul 18 2021: (Start)
Also the number of strict integer partitions of 2n+1 of even length with exactly one odd part. For example, the a(1) = 1 through a(8) = 12 partitions are:
  (2,1)  (3,2)  (4,3)  (5,4)  (6,5)   (7,6)      (8,7)      (9,8)
         (4,1)  (5,2)  (6,3)  (7,4)   (8,5)      (9,6)      (10,7)
                (6,1)  (7,2)  (8,3)   (9,4)      (10,5)     (11,6)
                       (8,1)  (9,2)   (10,3)     (11,4)     (12,5)
                              (10,1)  (11,2)     (12,3)     (13,4)
                                      (12,1)     (13,2)     (14,3)
                                      (6,4,2,1)  (14,1)     (15,2)
                                                 (6,4,3,2)  (16,1)
                                                 (8,4,2,1)  (6,5,4,2)
                                                            (8,4,3,2)
                                                            (8,6,2,1)
                                                            (10,4,2,1)
Also the number of integer partitions of 2n+1 covering an initial interval and having even maximum and alternating sum 1.
(End)
		

Crossrefs

Partial sums of A067659.
The following relate to strict integer partitions of 2n+1 of even length with exactly one odd part.
- Allowing any length gives A036469.
- The non-strict version is A306145.
- The version for odd length is A318155 (non-strict: A304620).
- Allowing any number of odd parts gives A343942 (odd bisection of A067661).
A000041 counts partitions.
A027187 counts partitions of even length (strict: A067661).
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= proc(n) option remember; b(n$2, 0)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..60);
  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k - 1))/Product[(1 - x^j), {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] - QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&EvenQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 18 2021 *)

Formula

a(n) = A036469(n) - A318155(n).
a(n) = A318155(n) - A078616(n).
a(n) ~ exp(Pi*sqrt(n/3)) * 3^(1/4) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018

A346634 Number of strict odd-length integer partitions of 2n + 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2021

Keywords

Examples

			The a(0) = 1 through a(7) = 14 partitions:
  (1)  (3)  (5)  (7)      (9)      (11)     (13)      (15)
                 (4,2,1)  (4,3,2)  (5,4,2)  (6,4,3)   (6,5,4)
                          (5,3,1)  (6,3,2)  (6,5,2)   (7,5,3)
                          (6,2,1)  (6,4,1)  (7,4,2)   (7,6,2)
                                   (7,3,1)  (7,5,1)   (8,4,3)
                                   (8,2,1)  (8,3,2)   (8,5,2)
                                            (8,4,1)   (8,6,1)
                                            (9,3,1)   (9,4,2)
                                            (10,2,1)  (9,5,1)
                                                      (10,3,2)
                                                      (10,4,1)
                                                      (11,3,1)
                                                      (12,2,1)
                                                      (5,4,3,2,1)
		

Crossrefs

Odd bisection of A067659, which is ranked by A030059.
The even version is the even bisection of A067661.
The case of all odd parts is counted by A069911 (non-strict: A078408).
The non-strict version is A160786, ranked by A340931.
The non-strict even version is A236913, ranked by A340784.
The even-length version is A343942 (non-strict: A236914).
The even-sum version is A344650 (non-strict: A236559 or A344611).
A000009 counts partitions with all odd parts, ranked by A066208.
A000009 counts strict partitions, ranked by A005117.
A027193 counts odd-length partitions, ranked by A026424.
A027193 counts odd-maximum partitions, ranked by A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A340385 counts partitions with odd length and maximum, ranked by A340386.
Other cases of odd length:
- A024429 set partitions
- A089677 ordered set partitions
- A166444 compositions
- A174726 ordered factorizations
- A332304 strict compositions
- A339890 factorizations

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(2*n+1$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 05 2021
  • Mathematica
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Aug 05 2021

A318155 Expansion of (1/(1 - x)) * Sum_{k>=0} x^(k*(2*k+1)) / Product_{j=1..2*k} (1 - x^j).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 22, 28, 35, 44, 55, 68, 84, 103, 126, 153, 185, 223, 268, 320, 381, 452, 535, 631, 742, 870, 1018, 1188, 1383, 1607, 1863, 2155, 2489, 2869, 3301, 3792, 4348, 4978, 5691, 6496, 7404, 8428, 9580, 10875, 12330, 13962, 15791, 17840, 20131, 22691
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2018

Keywords

Comments

Partial sums of A067661.
From Gus Wiseman, Jul 29 2021: (Start)
Also the number of strict integer partitions of 2n+1 of odd length with exactly one odd part. For example, the a(1) = 1 through a(7) = 10 partitions are:
(1) (3) (5) (7) (9) (11) (13) (15)
(4,2,1) (4,3,2) (5,4,2) (6,4,3) (6,5,4)
(6,2,1) (6,3,2) (6,5,2) (7,6,2)
(6,4,1) (7,4,2) (8,4,3)
(8,2,1) (8,3,2) (8,5,2)
(8,4,1) (8,6,1)
(10,2,1) (9,4,2)
(10,3,2)
(10,4,1)
(12,2,1)
The following relate to these partitions:
- Not requiring odd length gives A036469.
- The non-strict version is A304620.
- The version for even instead of odd length is A318156.
- Allowing any number of odd parts gives A346634 (bisection of A067659).
(End)

Crossrefs

First differences are A067661 (non-strict: A027187, odd bisection: A343942).
A000041 counts partitions.
A000070 counts partitions with alternating sum 1.
A078408 counts strict partitions of 2n+1 (odd bisection of A000009).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k (2 k + 1))/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 53; CoefficientList[Series[(QPochhammer[-x, x] + QPochhammer[x])/(2 (1 - x)), {x, 0, nmax}], x]
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&&Count[#,?OddQ]==1&]],{n,0,15}] (* _Gus Wiseman, Jul 29 2021 *)

Formula

a(n) = A036469(n) - A318156(n).
a(n) = A318156(n) + A078616(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, Aug 20 2018
Previous Showing 41-48 of 48 results.