cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A350943 Heinz numbers of integer partitions of which the number of even conjugate parts is equal to the number of odd parts.

Original entry on oeis.org

1, 3, 6, 7, 13, 14, 18, 19, 26, 27, 29, 36, 37, 38, 42, 43, 53, 54, 58, 61, 63, 70, 71, 74, 78, 79, 84, 86, 89, 101, 105, 106, 107, 113, 114, 117, 122, 126, 130, 131, 139, 140, 142, 151, 156, 158, 162, 163, 171, 173, 174, 178, 181, 190, 193, 195, 199, 202, 210
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   3: (2)
   6: (2,1)
   7: (4)
  13: (6)
  14: (4,1)
  18: (2,2,1)
  19: (8)
  26: (6,1)
  27: (2,2,2)
  29: (10)
  36: (2,2,1,1)
  37: (12)
  38: (8,1)
  42: (4,2,1)
For example, the partition (6,3,2) has conjugate (3,3,2,1,1,1) and 1 = 1 so 195 is in the sequence.
		

Crossrefs

These partitions are counted by A277579.
The conjugate version is A349157, also counted by A277579.
These are the positions of 0's in A350942.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A350848: # of even conj parts = # of odd conj parts, counted by A045931.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]&]

Formula

A350847(a(n)) = A257991(a(n)).

A357488 Number of integer partitions of 2n - 1 with the same length as alternating sum.

Original entry on oeis.org

1, 0, 1, 2, 4, 5, 9, 13, 23, 34, 54, 78, 120, 170, 252, 358, 517, 725, 1030, 1427, 1992, 2733, 3759, 5106, 6946, 9345, 12577, 16788, 22384, 29641, 39199, 51529, 67626, 88307, 115083, 149332, 193383, 249456, 321134, 411998, 527472, 673233, 857539, 1089223, 1380772
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2022

Keywords

Comments

A partition of n is a weakly decreasing sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(1) = 1 through a(7) = 9 partitions:
  (1)  .  (311)  (322)  (333)    (443)    (553)
                 (421)  (432)    (542)    (652)
                        (531)    (641)    (751)
                        (51111)  (52211)  (52222)
                                 (62111)  (53311)
                                          (62221)
                                          (63211)
                                          (73111)
                                          (7111111)
		

Crossrefs

For product equal to sum we have A001055, compositions A335405.
The version for compositions appears to be A222763, odd version of A357182.
These are the odd-indexed terms of A357189, ranked by A357486.
These partitions are ranked by the odd-sum portion of A357485.
Except at the start, alternately adding zeros gives A357487.
A000041 counts partitions, strict A000009.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],Length[#]==ats[#]&]],{n,1,30,2}]

Formula

a(n) = A357189(2n - 1).

Extensions

More terms from Alois P. Heinz, Oct 04 2022

A152146 Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= n) = number of partitions of 2n into 2k odd parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1, 0, 3, 3, 2, 1, 1, 0, 3, 5, 3, 2, 1, 1, 0, 4, 6, 5, 3, 2, 1, 1, 0, 4, 9, 7, 5, 3, 2, 1, 1, 0, 5, 11, 11, 7, 5, 3, 2, 1, 1, 0, 5, 15, 14, 11, 7, 5, 3, 2, 1, 1, 0, 6, 18, 20, 15, 11, 7, 5, 3, 2, 1, 1, 0, 6, 23, 26, 22, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Sep 25 2009, indices corrected Jul 09 2012

Keywords

Comments

In both this and A152157, reading columns downwards "converges" to A000041.
Also the number of strict integer partitions of 2n with alternating sum 2k. Also the number of normal integer partitions of 2n of which 2k parts are odd, where a partition is normal if it covers an initial interval of positive integers. - Gus Wiseman, Jun 20 2021

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  1   1
  0  2  2   1   1
  0  3  3   2   1   1
  0  3  5   3   2   1   1
  0  4  6   5   3   2   1  1
  0  4  9   7   5   3   2  1  1
  0  5 11  11   7   5   3  2  1  1
  0  5 15  14  11   7   5  3  2  1  1
  0  6 18  20  15  11   7  5  3  2  1  1
  0  6 23  26  22  15  11  7  5  3  2  1  1
  0  7 27  35  29  22  15 11  7  5  3  2  1  1
  0  7 34  44  40  30  22 15 11  7  5  3  2  1 1
  0  8 39  58  52  42  30 22 15 11  7  5  3  2 1 1
  0  8 47  71  70  55  42 30 22 15 11  7  5  3 2 1 1
  0  9 54  90  89  75  56 42 30 22 15 11  7  5 3 2 1 1
  0  9 64 110 116  97  77 56 42 30 22 15 11  7 5 3 2 1 1
  0 10 72 136 146 128 100 77 56 42 30 22 15 11 7 5 3 2 1 1
From _Gus Wiseman_, Jun 20 2021: (Start)
For example, row n = 6 counts the following partitions (B = 11):
  (75)  (3333)  (333111)  (33111111)  (3111111111)  (111111111111)
  (93)  (5331)  (531111)  (51111111)
  (B1)  (5511)  (711111)
        (7311)
        (9111)
The corresponding strict partitions are:
  (7,5)      (8,4)      (9,3)    (10,2)   (11,1)  (12)
  (6,5,1)    (5,4,3)    (7,3,2)  (9,2,1)
  (5,4,2,1)  (6,4,2)    (8,3,1)
             (7,4,1)
             (6,3,2,1)
The corresponding normal partitions are:
  43221    33321     3321111    321111111   21111111111  111111111111
  322221   332211    32211111   2211111111
  2222211  432111    222111111
           3222111
           22221111
(End)
		

Crossrefs

Cf. A035294 (row sums), A107379, A152140, A152157.
Column k = 1 is A004526.
Column k = 2-8 is A026810 - A026816.
The non-strict version is A239830.
The reverse non-strict version is A344610.
The reverse version is A344649
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A067659 counts strict partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sum of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-2)+`if`(i>n, 0, expand(sqrt(x)*b(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(2*n, 2*n-1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Jun 21 2021
  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&ats[#]==k&]],{n,0,30,2},{k,0,n,2}] (* Gus Wiseman, Jun 20 2021 *)

Formula

T(n,k) = A152140(2n,2k).

A035544 Number of partitions of n with equal number of parts congruent to each of 1 and 3 (mod 4).

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 4, 0, 10, 0, 13, 0, 28, 0, 37, 0, 72, 0, 96, 0, 172, 0, 230, 0, 391, 0, 522, 0, 846, 0, 1129, 0, 1766, 0, 2348, 0, 3564, 0, 4722, 0, 6992, 0, 9226, 0, 13371, 0, 17568, 0, 25006, 0, 32708, 0, 45817, 0, 59668, 0, 82430, 0, 106874, 0, 145830, 0, 188260, 0
Offset: 0

Views

Author

Keywords

Comments

From Gus Wiseman, Oct 12 2022: (Start)
Also the number of integer partitions of n whose skew-alternating sum is 0, where we define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ... These are the conjugates of the partitions described in the name. For example, the a(0) = 1 through a(8) = 10 partitions are:
() . (11) . (22) . (33) . (44)
(211) (321) (422)
(1111) (2211) (431)
(111111) (2222)
(3221)
(3311)
(22211)
(221111)
(2111111)
(11111111)
The ordered version (compositions) is A138364
These partitions are ranked by A357636, reverse A357632.
The reverse version is A357640 (aerated).
(End)

Examples

			From _Gus Wiseman_, Oct 12 2022: (Start)
The a(0) = 1 through a(8) = 10 partitions:
  ()  .  (2)  .  (4)   .  (6)    .  (8)
                 (22)     (42)      (44)
                 (31)     (222)     (53)
                          (321)     (62)
                                    (71)
                                    (422)
                                    (431)
                                    (2222)
                                    (3221)
                                    (3311)
(End)
		

Crossrefs

The case with at least one odd part is A035550.
Removing zeros gives A035594.
Central column k=0 of A357638.
These partitions are ranked by A357707.
A000041 counts integer partitions.
A344651 counts partitions by alternating sum, ordered A097805.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[n],skats[#]==0&]],{n,0,30}] (* Gus Wiseman,Oct 12 2022 *)

Extensions

More terms from David W. Wilson

A344649 Triangle read by rows where T(n,k) is the number of strict integer partitions of 2n with reverse-alternating sum 2k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 1, 3, 3, 2, 1, 0, 1, 0, 1, 4, 4, 3, 2, 1, 0, 1, 0, 1, 5, 6, 4, 3, 2, 1, 0, 1, 0, 1, 7, 7, 6, 4, 3, 2, 1, 0, 1, 0, 1, 8, 10, 8, 6, 4, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. So T(n,k) is the number of strict integer partitions of 2n into an odd number of parts whose conjugate has exactly 2k odd parts.
Also the number of reversed strict integer partitions of 2n with alternating sum 2k.

Examples

			Triangle begins:
   1
   0   1
   0   0   1
   0   1   0   1
   0   1   1   0   1
   0   1   2   1   0   1
   0   1   3   2   1   0   1
   0   1   3   3   2   1   0   1
   0   1   4   4   3   2   1   0   1
   0   1   5   6   4   3   2   1   0   1
   0   1   7   7   6   4   3   2   1   0   1
   0   1   8  10   8   6   4   3   2   1   0   1
   0   1  10  13  12   8   6   4   3   2   1   0   1
   0   1  11  18  15  12   8   6   4   3   2   1   0   1
   0   1  14  22  21  16  12   8   6   4   3   2   1   0   1
   0   1  15  29  27  23  16  12   8   6   4   3   2   1   0   1
Row n = 8 counts the following partitions (empty columns indicated by dots):
  .  (8,7,1)  (7,6,3)      (7,5,4)   (9,4,3)   (11,3,2)  (13,2,1)  .  (16)
              (8,6,2)      (8,5,3)   (10,4,2)  (12,3,1)
              (9,6,1)      (9,5,2)   (11,4,1)
              (6,4,3,2,1)  (10,5,1)
Row n = 9 counts the following partitions (empty columns indicated by dots, A..I = 10..18):
  .  981   873     765     954   B43   D32   F21   .  I
           972     864     A53   C42   E31
           A71     963     B52   D41
           65421   A62     C51
           75321   B61
                   84321
		

Crossrefs

The non-reversed version is A152146.
The non-reversed non-strict version is A239830.
Column k = 2 is A343941.
The non-strict version is A344610.
Row sums are A344650.
Right half of even-indexed rows of A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A067659 counts strict partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A124754 gives alternating sum of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&sats[#]==k&]],{n,0,30,2},{k,0,n,2}]

A345196 Number of integer partitions of n with reverse-alternating sum equal to the reverse-alternating sum of their conjugate.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 4, 4, 4, 8, 11, 11, 11, 20, 27, 29, 31, 48, 65, 70, 74, 109, 145, 160, 172, 238, 314, 345, 372, 500, 649, 721, 782, 1019, 1307, 1451, 1577, 2015, 2552, 2841, 3098, 3885, 4867, 5418, 5914, 7318, 9071, 10109, 11050
Offset: 0

Views

Author

Gus Wiseman, Jun 26 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. By conjugation, this is also (-1)^(r-1) times the number of odd parts, where r is the greatest part. So a(n) is the number of integer partitions of n of even rank with the same number of odd parts as their conjugate.

Examples

			The a(5) = 1 through a(12) = 11 partitions:
  (311)  (321)  (43)    (44)    (333)    (541)    (65)      (66)
                (2221)  (332)   (531)    (4321)   (4322)    (552)
                (4111)  (2222)  (32211)  (32221)  (4331)    (4332)
                        (4211)  (51111)  (52111)  (4421)    (4422)
                                                  (6311)    (4431)
                                                  (222221)  (6411)
                                                  (422111)  (33222)
                                                  (611111)  (53211)
                                                            (222222)
                                                            (422211)
                                                            (621111)
		

Crossrefs

The non-reverse version is A277103.
Comparing even parts to odd conjugate parts gives A277579.
Comparing signs only gives A340601.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],sats[#]==sats[conj[#]]&]],{n,0,15}]

A344743 Number of integer partitions of 2n with reverse-alternating sum < 0.

Original entry on oeis.org

0, 0, 1, 3, 7, 15, 29, 54, 96, 165, 275, 449, 716, 1123, 1732, 2635, 3955, 5871, 8620, 12536, 18065, 25821, 36617, 51560, 72105, 100204, 138417, 190134, 259772, 353134, 477734, 643354, 862604, 1151773, 1531738, 2029305, 2678650, 3523378, 4618835, 6035240, 7861292
Offset: 0

Views

Author

Gus Wiseman, Jun 09 2021

Keywords

Comments

Conjecture: a(n) >= A236914.
The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. So a(n) is the number of even-length partitions of 2n with at least one odd conjugate part. By conjugation, this is also the number of partitions of 2n with greatest part even and at least one odd part.
The alternating sum of a partition is never < 0, so the non-reverse version is A000004.

Examples

			The a(2) = 1 through a(5) = 15 partitions:
  (31)  (42)    (53)      (64)
        (51)    (62)      (73)
        (3111)  (71)      (82)
                (3221)    (91)
                (4211)    (3331)
                (5111)    (4222)
                (311111)  (4321)
                          (5221)
                          (5311)
                          (6211)
                          (7111)
                          (322111)
                          (421111)
                          (511111)
                          (31111111)
		

Crossrefs

The ordered version (compositions not partitions) appears to be A008549.
The Heinz numbers are A119899 /\ A300061.
Even bisection of A344608.
The complementary partitions of 2n are counted by A344611.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001523 counts unimodal compositions (partial sums: A174439).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    sats[y_] := Sum[(-1)^(i - Length[y])*y[[i]], {i, Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]<0&]],{n,0,30,2}]

Formula

a(n) = A058696(n) - A344611(n).
a(n) = sum of left half of even-indexed rows of A344612.

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A357487 Number of integer partitions of n with the same length as reverse-alternating sum.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 2, 0, 4, 0, 5, 0, 9, 0, 13, 0, 23, 0, 34, 0, 54, 0, 78, 0, 120, 0, 170, 0, 252, 0, 358, 0, 517, 0, 725, 0, 1030, 0, 1427, 0, 1992, 0, 2733, 0, 3759, 0, 5106, 0, 6946, 0, 9345, 0, 12577, 0, 16788, 0, 22384, 0, 29641, 0
Offset: 0

Views

Author

Gus Wiseman, Oct 01 2022

Keywords

Comments

A partition of n is a weakly decreasing sequence of positive integers summing to n.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^i y_i.

Examples

			The a(1) = 1 through a(13) = 9 partitions:
  1   .  .  .  311   .  322   .  333     .  443     .  553
                        421      432        542        652
                                 531        641        751
                                 51111      52211      52222
                                            62111      53311
                                                       62221
                                                       63211
                                                       73111
                                                       7111111
		

Crossrefs

For product equal to sum we have A001055, compositions A335405.
The version for compositions is A357182, reverse ranked by A357184.
The reverse version is A357189, ranked by A357486.
These partitions are ranked by A357485.
Removing zeros gives A357488.
A000041 counts partitions, strict A000009.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],Length[#]==ats[Reverse[#]]&]],{n,0,30}]

A345959 Numbers whose prime indices have alternating sum -1.

Original entry on oeis.org

6, 15, 24, 35, 54, 60, 77, 96, 135, 140, 143, 150, 216, 221, 240, 294, 308, 315, 323, 375, 384, 437, 486, 540, 560, 572, 600, 667, 693, 726, 735, 864, 875, 884, 899, 960, 1014, 1147, 1176, 1215, 1232, 1260, 1287, 1292, 1350, 1500, 1517, 1536, 1715, 1734, 1748
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also numbers with even Omega (A001222) and exactly one odd conjugate prime index. Conjugate prime indices are listed by A321650, ranked by A122111.

Examples

			The initial terms and their prime indices:
    6: {1,2}
   15: {2,3}
   24: {1,1,1,2}
   35: {3,4}
   54: {1,2,2,2}
   60: {1,1,2,3}
   77: {4,5}
   96: {1,1,1,1,1,2}
  135: {2,2,2,3}
  140: {1,1,3,4}
  143: {5,6}
  150: {1,2,3,3}
  216: {1,1,1,2,2,2}
  221: {6,7}
  240: {1,1,1,1,2,3}
		

Crossrefs

These multisets are counted by A000070.
The k = 0 version is A000290, counted by A000041.
The k = 1 version is A001105.
The k > 0 version is A026424.
These are the positions of -1's in A316524.
The k = 2 version is A345960.
The k = -2 version is A345962.
A000984/A345909/A345911 count/rank compositions with alternating sum 1.
A001791/A345910/A345912 count/rank compositions with alternating sum -1.
A027187 counts partitions with reverse-alternating sum <= 0.
A056239 adds up prime indices, row sums of A112798.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534/A325535 count separable/inseparable partitions.
A344607 counts partitions with reverse-alternating sum >= 0.
A344616 gives the alternating sum of reversed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[primeMS[#]]==-1&]

A345961 Numbers whose prime indices have reverse-alternating sum 2.

Original entry on oeis.org

3, 10, 12, 21, 27, 30, 40, 48, 55, 70, 75, 84, 90, 91, 108, 120, 147, 154, 160, 187, 189, 192, 210, 220, 243, 247, 250, 270, 280, 286, 300, 336, 360, 363, 364, 391, 432, 442, 462, 480, 490, 495, 507, 525, 551, 588, 616, 630, 640, 646, 675, 713, 748, 750, 756
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. Of course, the reverse-alternating sum of prime indices is also the alternating sum of reversed prime indices.
Also numbers with exactly two odd conjugate prime indices. The restriction to odd omega is A345960, and the restriction to even omega is A345962.

Examples

			The initial terms and their prime indices:
    3: {2}
   10: {1,3}
   12: {1,1,2}
   21: {2,4}
   27: {2,2,2}
   30: {1,2,3}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   55: {3,5}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
   91: {4,6}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
		

Crossrefs

Below we use k to indicate reverse-alternating sum.
The k > 0 version is A000037.
These multisets are counted by A000097.
The k = 0 version is A000290, counted by A000041.
These partitions are counted by A120452 (negative: A344741).
These are the positions of 2's in A344616.
The k = -1 version is A345912.
The k = 1 version is A345958.
The unreversed version is A345960 (negative: A345962).
A000070 counts partitions with alternating sum 1.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A027187 counts partitions with reverse-alternating sum <= 0.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A088218 also counts compositions with alternating sum 0, ranked by A344619.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices.
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[100],sats[primeMS[#]]==2&]
Previous Showing 31-40 of 54 results. Next