cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A277579 Number of partitions of n for which the number of even parts is equal to the positive alternating sum of the parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 6, 7, 9, 13, 15, 19, 25, 31, 38, 48, 59, 74, 90, 111, 136, 166, 201, 246, 297, 357, 431, 522, 621, 745, 892, 1063, 1263, 1503, 1780, 2109, 2491, 2941, 3463, 4077, 4783, 5616, 6576, 7689, 8981, 10486, 12207, 14209, 16516, 19178, 22231
Offset: 0

Views

Author

Emeric Deutsch and Alois P. Heinz, Oct 20 2016

Keywords

Comments

In the first Maple program (improvable) AS gives the positive alternating sum of a finite sequence s, EP gives the number of even terms of a finite sequence of positive integers.
For the specified value of n, the second Maple program lists the partitions of n counted by a(n).
Also the number of integer partitions of n with as many even parts as odd parts in the conjugate partition. - Gus Wiseman, Jul 26 2021

Examples

			a(9) = 6: [2,1,1,1,1,1,1,1], [3,2,1,1,1,1], [3,3,2,1], [4,2,2,1], [4,3,1,1], [5,4].
a(10) = 7: [1,1,1,1,1,1,1,1,1,1], [3,2,2,1,1,1], [3,3,1,1,1,1], [4,2,1,1,1,1], [4,3,2,1], [5,5], [6,4].
a(11) = 9: [2,1,1,1,1,1,1,1,1,1], [3,2,1,1,1,1,1,1], [3,3,2,1,1,1], [3,3,3,2], [4,2,2,1,1,1], [4,3,1,1,1,1], [5,2,2,2], [5,4,1,1], [6,5].
		

Crossrefs

The sign-sensitive version is A035457 (aerated version of A000009).
Comparing odd parts to odd conjugate parts gives A277103.
Comparing product of parts to product of conjugate parts gives A325039.
Comparing the rev-alt sum to that of the conjugate gives A345196.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: EP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 0 then ct := ct+1 else  end if end do: ct end proc: a := proc (n) local P, c, k: P := partition(n): c := 0: for k to nops(P) do if AS(P[k]) = EP(P[k]) then c := c+1 else  end if end do: c end proc: seq(a(n), n = 0 .. 30);
    n := 8: with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: EP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 0 then ct := ct+1 else  end if end do: ct end proc: P := partition(n): C := {}: for k to nops(P) do if AS(P[k]) = EP(P[k]) then C := `union`(C, {P[k]}) else  end if end do: C;
    # alternative Maple program:
    b:= proc(n, i, s, t) option remember; `if`(n=0,
          `if`(s=0, 1, 0), `if`(i<1, 0, b(n, i-1, s, t)+
          `if`(i>n, 0, b(n-i, i, s+t*i-irem(i+1, 2), -t))))
        end:
    a:= n-> b(n$2, 0, 1):
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_, s_, t_] := b[n, i, s, t] = If[n == 0, If[s == 0, 1, 0], If[i<1, 0, b[n, i-1, s, t] + If[i>n, 0, b[n-i, i, s + t*i - Mod[i+1, 2], -t]]]]; a[n_] := b[n, n, 0, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 21 2016, translated from Maple *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,15}] (* Gus Wiseman, Jul 26 2021 *)
  • Sage
    def a(n):
        AS = lambda s: abs(sum((-1)^i*t for i,t in enumerate(s)))
        EP = lambda s: sum((t+1)%2 for t in s)
        return sum(AS(p) == EP(p) for p in Partitions(n))
    print([a(n) for n in (0..30)]) # Peter Luschny, Oct 21 2016

A277103 Number of partitions of n for which the number of odd parts is equal to the positive alternating sum of the parts.

Original entry on oeis.org

1, 1, 0, 1, 3, 3, 1, 3, 10, 10, 4, 10, 27, 27, 13, 28, 69, 69, 37, 72, 161, 162, 96, 171, 361, 364, 230, 388, 768, 777, 522, 836, 1581, 1605, 1128, 1739, 3145, 3203, 2345, 3495, 6094, 6225, 4712, 6831, 11511, 11794, 9198, 13010, 21293, 21875, 17496, 24239
Offset: 0

Views

Author

Emeric Deutsch, Oct 18 2016

Keywords

Comments

It follows by conjugation that the partition statistics "alternating sum" and "number of odd parts" are equidistributed. Consequently, the self-conjugate partitions satisfy the required condition.
In the first Maple program (improvable) AS gives the positive alternating sum of a finite sequence s, OP gives the number of odd terms of a finite sequence of positive integers.
For the specified value of n, the second Maple program lists the partitions of n counted by a(n).
Number of integer partitions of n with the same number of odd parts as their conjugate. - Gus Wiseman, Jun 27 2021

Examples

			a(3) = 1 because we have [2,1]. The partitions [3] and [1,1,1] do not qualify.
a(4) = 3 because we have [3,1], [2,2], and [2,1,1]. The partitions [4] and [1,1,1,1] do not qualify.
		

Crossrefs

Comparing even parts to odd conjugate parts gives A277579.
Comparing product of parts to product of conjugate parts gives A325039.
The reverse version is A345196.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with rev-alt sum 2 (negative: A344741).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: OP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 1 then ct := ct+1 else  end if end do: ct end proc: a := proc (n) local P, c, k: P := partition(n): c := 0: for k to nops(P) do if AS(P[k]) = OP(P[k]) then c := c+1 else end if end do: c end proc: seq(a(n), n = 0 .. 50);
    n := 8: with(combinat): AS := proc (s) options operator, arrow: abs(add((-1)^(i-1)*s[i], i = 1 .. nops(s))) end proc: OP := proc (s) local ct, j: ct := 0: for j to nops(s) do if `mod`(s[j], 2) = 1 then ct := ct+1 else  end if end do: ct end proc: P := partition(n): C := {}: for k to nops(P) do if AS(P[k]) = OP(P[k]) then C := `union`(C, {P[k]}) else  end if end do: C;
    # alternative Maple program:
    b:= proc(n, i, s, t) option remember; `if`(n=0,
          `if`(s=0, 1, 0), `if`(i<1, 0, b(n, i-1, s, t)+
          `if`(i>n, 0, b(n-i, i, s+t*i-irem(i, 2), -t))))
        end:
    a:= n-> b(n$2, 0, 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 19 2016
  • Mathematica
    b[n_, i_, s_, t_] := b[n, i, s, t] = If[n == 0, If[s == 0, 1, 0], If[i<1, 0, b[n, i-1, s, t] + If[i>n, 0, b[n-i, i, s + t*i - Mod[i, 2], -t]]]]; a[n_] := b[n, n, 0, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[conj[#],?OddQ]&]],{n,0,15}] (* Gus Wiseman, Jun 27 2021 *)

A350945 Heinz numbers of integer partitions of which the number of even parts is equal to the number of even conjugate parts.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 11, 14, 17, 20, 21, 23, 24, 26, 30, 31, 32, 36, 38, 39, 41, 44, 47, 56, 57, 58, 59, 66, 67, 68, 73, 74, 75, 80, 83, 84, 86, 87, 92, 96, 97, 102, 103, 104, 106, 109, 111, 120, 122, 124, 125, 127, 128, 129, 137, 138, 142, 144, 149, 152, 156
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   5: (3)
   6: (2,1)
   8: (1,1,1)
   9: (2,2)
  11: (5)
  14: (4,1)
  17: (7)
  20: (3,1,1)
  21: (4,2)
  23: (9)
  24: (2,1,1,1)
		

Crossrefs

These partitions are counted by A350948.
These are the positions of 0's in A350950.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # of even conj parts = # of odd conj parts, counted by A045931.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[conj[primeMS[#]],?EvenQ]==Count[primeMS[#],?EvenQ]&]

Formula

A257992(a(n)) = A350847(a(n)).

A350944 Heinz numbers of integer partitions of which the number of odd parts is equal to the number of odd conjugate parts.

Original entry on oeis.org

1, 2, 6, 9, 10, 12, 15, 18, 20, 30, 35, 49, 54, 55, 56, 70, 75, 77, 81, 84, 88, 90, 98, 108, 110, 112, 125, 132, 135, 143, 154, 162, 168, 169, 176, 180, 187, 210, 221, 260, 264, 270, 286, 294, 315, 323, 330, 338, 340, 350, 361, 363, 364, 374, 391, 416, 420
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   6: (2,1)
   9: (2,2)
  10: (3,1)
  12: (2,1,1)
  15: (3,2)
  18: (2,2,1)
  20: (3,1,1)
  30: (3,2,1)
  35: (4,3)
  49: (4,4)
  54: (2,2,2,1)
		

Crossrefs

These partitions are counted by A277103.
The even rank case is A345196.
The conjugate version is A350943, counted by A277579.
These are the positions of 0's in A350951, even A350950.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # even conj parts = # odd conj parts, counted by A045931.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[conj[primeMS[#]],?OddQ]==Count[primeMS[#],?OddQ]&]

Formula

A257991(a(n)) = A344616(a(n)).

A350948 Number of integer partitions of n with as many even parts as even conjugate parts.

Original entry on oeis.org

1, 1, 0, 3, 1, 5, 3, 7, 6, 10, 10, 18, 19, 27, 31, 40, 47, 65, 75, 98, 115, 142, 170, 217, 257, 316, 376, 458, 544, 671, 792, 952, 1129, 1351, 1598, 1919, 2259, 2681, 3155, 3739, 4384, 5181, 6064, 7129, 8331, 9764, 11380, 13308, 15477, 18047, 20944
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Examples

			The a(0) = 1 through a(8) = 6 partitions (empty column indicated by dot):
  ()  (1)  .  (3)    (22)  (5)      (42)    (7)        (62)
              (21)         (41)     (321)   (61)       (332)
              (111)        (311)    (2211)  (511)      (521)
                           (2111)           (4111)     (4211)
                           (11111)          (31111)    (32111)
                                            (211111)   (221111)
                                            (1111111)
For example, both (3,2,1,1,1) and its conjugate (5,2,1) have exactly 1 even part, so are counted under a(8).
		

Crossrefs

Comparing even to odd parts gives A045931, ranked by A325698.
The odd version is A277103, even rank case A345196, ranked by A350944.
Comparing even to odd conjugate parts gives A277579, ranked by A349157.
Comparing product of parts to product of conjugate parts gives A325039.
These partitions are ranked by A350945, the zeros of A350950.
A000041 counts integer partitions, strict A000009.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A116482 counts partitions by number of even (or even conjugate) parts.
A122111 represents partition conjugation using Heinz numbers.
A257991 counts odd parts, conjugate A344616.
A257992 counts even parts, conjugate A350847.
A351976: # even = # even conj, # odd = # odd conj, ranked by A350949.
A351977: # even = # odd, # even conj = # odd conj, ranked by A350946.
A351978: # even = # odd = # even conj = # odd conj, ranked by A350947.
A351981: # even = # odd conj, # odd = # even conj, ranked by A351980.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A350943 Heinz numbers of integer partitions of which the number of even conjugate parts is equal to the number of odd parts.

Original entry on oeis.org

1, 3, 6, 7, 13, 14, 18, 19, 26, 27, 29, 36, 37, 38, 42, 43, 53, 54, 58, 61, 63, 70, 71, 74, 78, 79, 84, 86, 89, 101, 105, 106, 107, 113, 114, 117, 122, 126, 130, 131, 139, 140, 142, 151, 156, 158, 162, 163, 171, 173, 174, 178, 181, 190, 193, 195, 199, 202, 210
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   3: (2)
   6: (2,1)
   7: (4)
  13: (6)
  14: (4,1)
  18: (2,2,1)
  19: (8)
  26: (6,1)
  27: (2,2,2)
  29: (10)
  36: (2,2,1,1)
  37: (12)
  38: (8,1)
  42: (4,2,1)
For example, the partition (6,3,2) has conjugate (3,3,2,1,1,1) and 1 = 1 so 195 is in the sequence.
		

Crossrefs

These partitions are counted by A277579.
The conjugate version is A349157, also counted by A277579.
These are the positions of 0's in A350942.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A350848: # of even conj parts = # of odd conj parts, counted by A045931.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]&]

Formula

A350847(a(n)) = A257991(a(n)).

A350951 Number of odd parts minus number of odd conjugate parts in the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, -2, 2, -2, 0, -4, 2, 0, 0, -4, 0, -6, -2, 0, 4, -6, 0, -8, 0, -2, -2, -8, 2, 2, -4, -2, -2, -10, 0, -10, 4, -2, -4, 0, 2, -12, -6, -4, 2, -12, -2, -14, -2, -2, -6, -14, 2, 0, 2, -4, -4, -16, 0, 0, 0, -6, -8, -16, 2, -18, -8, -4, 6, -2, -2, -18, -4, -6, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
All terms are even.

Examples

			The prime indices of 78 are (6,2,1), with conjugate (3,2,1,1,1,1), so a(78) = 1 - 5 = -4.
		

Crossrefs

The version comparing even with odd parts is A195017.
The version comparing even with odd conjugate parts is A350849.
The version comparing even conjugate with odd conjugate parts is A350941.
The version comparing odd with even conjugate parts is A350942.
Positions of 0's are A350944, even rank case A345196, counted by A277103.
The version comparing even with even conjugate parts is A350950.
There are four individual statistics:
- A257991 counts odd parts, conjugate A344616.
- A257992 counts even parts, conjugate A350847.
There are five other possible pairings of statistics:
- A325698: # of even parts = # of odd parts, counted by A045931.
- A349157: # of even parts = # of odd conjugate parts, counted by A277579.
- A350848: # of even conj parts = # of odd conj parts, counted by A045931.
- A350943: # of even conjugate parts = # of odd parts, counted by A277579.
- A350945: # of even parts = # of even conjugate parts, counted by A350948.
There are three possible double-pairings of statistics:
- A350946, counted by A351977.
- A350949, counted by A351976.
- A351980, counted by A351981.
The case of all four statistics equal is A350947, counted by A351978.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A103919 counts partitions by number of odd parts.
A116482 counts partitions by number of even parts.
A122111 represents partition conjugation using Heinz numbers.
A316524 gives the alternating sum of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Count[primeMS[n],?OddQ]-Count[conj[primeMS[n]],?OddQ],{n,100}]

Formula

a(n) = A257991 - A344616(n).
a(A122111(n)) = -a(n), where A122111 represents partition conjugation.

A347448 Number of integer partitions of n with alternating product > 1.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 12, 17, 25, 35, 49, 66, 90, 120, 161, 209, 275, 355, 460, 585, 750, 946, 1199, 1498, 1881, 2335, 2909, 3583, 4430, 5428, 6666, 8118, 9912, 12013, 14586, 17592, 21252, 25525, 30695, 36711, 43956, 52382, 62469, 74173, 88132, 104303, 123499
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(2) = 1 through a(7) = 12 partitions:
  (2)  (3)   (4)    (5)     (6)      (7)
       (21)  (31)   (32)    (42)     (43)
             (211)  (41)    (51)     (52)
                    (311)   (222)    (61)
                    (2111)  (321)    (322)
                            (411)    (421)
                            (3111)   (511)
                            (21111)  (2221)
                                     (3211)
                                     (4111)
                                     (31111)
                                     (211111)
		

Crossrefs

The strict case is A000009, except that a(0) = a(1) = 0.
Allowing any alternating product >= 1 gives A000041, reverse A344607.
Ranked by A028983 (reverse A347465), which has complement A028982.
The complement is counted by A119620, reverse A347443.
The multiplicative version is A339890, weak A347456, reverse A347705.
The even-length case is A344608.
Allowing any integer reverse-alternating product gives A347445.
Allowing any integer alternating product gives A347446.
The reverse version is A347449, also the odd-length case.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.

Programs

  • Maple
    a:= n-> (p-> p(n)-p(iquo(n, 2)))(combinat[numbpart]):
    seq(a(n), n=0..63);  # Alois P. Heinz, Oct 04 2021
  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[#]>1&]],{n,0,30}]

Formula

a(n) = A000041(n) - A119620(n).

A352130 Number of strict integer partitions of n with as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 65, 72, 79, 86, 93, 102, 111, 121, 132, 143, 155, 169, 183, 197, 213, 231, 251, 271, 292, 315, 340, 367, 396
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 2    7        9        13        14         15         16
   --------------------------------------------------------------------
    (2)  (6,1)    (8,1)    (12,1)    (14)       (14,1)     (16)
         (4,2,1)  (4,3,2)  (6,4,3)   (6,5,3)    (6,5,4)    (8,5,3)
                  (6,2,1)  (8,3,2)   (10,3,1)   (8,4,3)    (12,3,1)
                           (10,2,1)  (6,4,3,1)  (10,3,2)   (6,5,4,1)
                                     (8,3,2,1)  (12,2,1)   (8,4,3,1)
                                                (6,5,3,1)  (10,3,2,1)
                                                           (6,4,3,2,1)
		

Crossrefs

This is the strict case of A277579, ranked by A350943 (zeros of A350942).
The conjugate version is A352131, non-strict A277579 (ranked by A349157).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931, ranked by A325698, strict A239241.
- A045931, ranked by A350848, strict A352129.
- A277103, ranked by A350944, strict new.
- A350948, ranked by A350945, strict new.
There are three double-pairings of statistics:
- A351976, ranked by A350949, strict A010054?
- A351977, ranked by A350946, strict A352128.
- A351981, ranked by A351980. strict A014105?
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A352131 Number of strict integer partitions of n with same number of even parts as odd conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 4, 5, 5, 5, 6, 7, 7, 8, 10, 10, 10, 12, 14, 15, 14, 17, 21, 20, 20, 25, 28, 28, 29, 34, 39, 39, 40, 47, 52, 53, 56, 64, 70, 71, 77, 86, 92, 97, 104, 114, 122
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 3      10         14         18         21             24
   ----------------------------------------------------------------------
    (2,1)  (6,4)      (8,6)      (10,8)     (11,10)        (8,7,5,4)
           (4,3,2,1)  (5,4,3,2)  (6,5,4,3)  (8,6,4,3)      (9,8,4,3)
                      (6,5,2,1)  (7,6,3,2)  (8,7,4,2)      (10,8,4,2)
                                 (8,7,2,1)  (10,8,2,1)     (10,9,3,2)
                                            (6,5,4,3,2,1)  (11,10,2,1)
                                                           (8,6,4,3,2,1)
		

Crossrefs

This is the strict case of A277579, ranked by A349157 (zeros of A350849).
The conjugate version is A352130, non-strict A277579 (ranked by A350943).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931, ranked by A325698, strict A239241.
- A045931, ranked by A350848, strict A352129.
- A277103, ranked by A350944.
- A350948, ranked by A350945.
There are three double-pairings of statistics:
- A351976, ranked by A350949.
- A351977, ranked by A350946, strict A352128.
- A351981, ranked by A351980.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]
Showing 1-10 of 12 results. Next