cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 54 results. Next

A357645 Triangle read by rows where T(n,k) is the number of integer compositions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 2, 2, 4, 0, 0, 3, 5, 3, 5, 0, 0, 4, 8, 10, 4, 6, 0, 0, 5, 11, 18, 18, 5, 7, 0, 0, 6, 14, 28, 36, 30, 6, 8, 0, 0, 7, 17, 41, 63, 65, 47, 7, 9, 0, 0, 8, 20, 58, 104, 126, 108, 70, 8, 10, 0, 0, 9, 23, 80, 164, 230, 230, 168, 100, 9, 11
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			Triangle begins:
   1
   0   1
   0   0   2
   0   0   1   3
   0   0   2   2   4
   0   0   3   5   3   5
   0   0   4   8  10   4   6
   0   0   5  11  18  18   5   7
   0   0   6  14  28  36  30   6   8
   0   0   7  17  41  63  65  47   7   9
   0   0   8  20  58 104 126 108  70   8  10
Row n = 6 counts the following compositions:
  (114)   (123)    (132)     (141)  (6)
  (1113)  (213)    (222)     (231)  (15)
  (1122)  (1212)   (312)     (321)  (24)
  (1131)  (1221)   (1311)    (411)  (33)
          (2112)   (2211)           (42)
          (2121)   (3111)           (51)
          (11121)  (11112)
          (11211)  (12111)
                   (21111)
                   (111111)
		

Crossrefs

Row sums are A011782.
For original alternating sum we have A097805, unordered A344651.
Column k = n-4 appears to be A177787.
The case of partitions is A357637, skew A357638.
The central column k=0 is A357641 (aerated).
The skew-alternating version is A357646.
The reverse version for partitions is A357704, skew A357705.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Mathematica
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],halfats[#]==k&]],{n,0,10},{k,-n,n,2}]

A352130 Number of strict integer partitions of n with as many odd parts as even conjugate parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 65, 72, 79, 86, 93, 102, 111, 121, 132, 143, 155, 169, 183, 197, 213, 231, 251, 271, 292, 315, 340, 367, 396
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 2    7        9        13        14         15         16
   --------------------------------------------------------------------
    (2)  (6,1)    (8,1)    (12,1)    (14)       (14,1)     (16)
         (4,2,1)  (4,3,2)  (6,4,3)   (6,5,3)    (6,5,4)    (8,5,3)
                  (6,2,1)  (8,3,2)   (10,3,1)   (8,4,3)    (12,3,1)
                           (10,2,1)  (6,4,3,1)  (10,3,2)   (6,5,4,1)
                                     (8,3,2,1)  (12,2,1)   (8,4,3,1)
                                                (6,5,3,1)  (10,3,2,1)
                                                           (6,4,3,2,1)
		

Crossrefs

This is the strict case of A277579, ranked by A350943 (zeros of A350942).
The conjugate version is A352131, non-strict A277579 (ranked by A349157).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931, ranked by A325698, strict A239241.
- A045931, ranked by A350848, strict A352129.
- A277103, ranked by A350944, strict new.
- A350948, ranked by A350945, strict new.
There are three double-pairings of statistics:
- A351976, ranked by A350949, strict A010054?
- A351977, ranked by A350946, strict A352128.
- A351981, ranked by A351980. strict A014105?
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]

A357646 Triangle read by rows where T(n,k) is the number of integer compositions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 3, 1, 1, 0, 4, 5, 5, 1, 1, 0, 5, 7, 10, 8, 1, 1, 0, 6, 9, 17, 18, 12, 1, 1, 0, 7, 11, 27, 35, 29, 17, 1, 1, 0, 8, 13, 41, 63, 63, 43, 23, 1, 1, 0, 9, 15, 60, 106, 126, 104, 60, 30, 1, 1, 0, 10, 17, 85, 168, 232, 230, 162, 80, 38, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   1   1
   0   3   3   1   1
   0   4   5   5   1   1
   0   5   7  10   8   1   1
   0   6   9  17  18  12   1   1
   0   7  11  27  35  29  17   1   1
   0   8  13  41  63  63  43  23   1   1
   0   9  15  60 106 126 104  60  30   1   1
Row n = 6 counts the following compositions:
  (15)   (24)    (33)      (42)     (51)  (6)
  (114)  (213)   (312)     (411)
  (123)  (222)   (321)     (1113)
  (132)  (231)   (1122)    (2112)
  (141)  (1131)  (1212)    (3111)
         (1221)  (2121)    (11112)
         (1311)  (2211)    (11121)
                 (11211)   (21111)
                 (12111)
                 (111111)
		

Crossrefs

The central column k=0 is A001700 (aerated), half A357641.
Row sums are A011782.
For original alternating sum we have A097805, unordered A344651.
The skew-alternating sum of standard compositions is A357623, half A357621.
The case of partitions is A357638, half A357637.
The half-alternating version is A357645.
The reverse version for partitions is A357705, half A357704.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],skats[#]==k&]],{n,0,10},{k,-n,n,2}]

A357704 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 3, 0, 0, 2, 2, 0, 3, 0, 0, 3, 1, 3, 0, 4, 0, 0, 3, 2, 4, 2, 0, 4, 0, 0, 4, 2, 6, 2, 3, 0, 5, 0, 0, 4, 3, 5, 7, 3, 3, 0, 5, 0, 0, 5, 3, 8, 4, 10, 2, 4, 0, 6, 0, 0, 5, 4, 8, 6, 11, 9, 3, 4, 0, 6, 0, 0, 6, 4, 11, 5, 15, 8, 13, 3, 5, 0, 7
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  1  2
  0  0  2  0  3
  0  0  2  2  0  3
  0  0  3  1  3  0  4
  0  0  3  2  4  2  0  4
  0  0  4  2  6  2  3  0  5
  0  0  4  3  5  7  3  3  0  5
  0  0  5  3  8  4 10  2  4  0  6
  0  0  5  4  8  6 11  9  3  4  0  6
  0  0  6  4 11  5 15  8 13  3  5  0  7
  0  0  6  5 11  8 13 19 10 13  4  5  0  7
  0  0  7  5 14  8 19 13 25  9 17  4  6  0  8
  0  0  7  6 14 11 19 17 29 23 13 18  5  6  0  8
Row n = 7 counts the following reversed partitions:
  .  .  (115)   (124)   (133)      (11113)   .  (7)
        (1114)  (1222)  (223)      (111112)     (16)
        (1123)          (11122)                 (25)
                        (1111111)               (34)
		

Crossrefs

Row sums are A000041.
Last entry of row n is A008619(n).
The central column in the non-reverse case is A035363, skew A035544.
For original reverse-alternating sum we have A344612.
For original alternating sum we have A344651, ordered A097805.
The non-reverse version is A357637, skew A357638.
The central column is A357639, skew A357640.
The non-reverse ordered version (compositions) is A357645, skew A357646.
The skew-alternating version is A357705.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Mathematica
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[Length[Select[Reverse/@IntegerPartitions[n],halfats[#]==k&]],{n,0,15},{k,-n,n,2}]

A345960 Numbers whose prime indices have alternating sum 2.

Original entry on oeis.org

3, 12, 27, 30, 48, 70, 75, 108, 120, 147, 154, 192, 243, 270, 280, 286, 300, 363, 432, 442, 480, 507, 588, 616, 630, 646, 675, 750, 768, 867, 874, 972, 1080, 1083, 1120, 1144, 1200, 1323, 1334, 1386, 1452, 1470, 1587, 1728, 1750, 1768, 1798, 1875, 1920, 2028
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also numbers with odd Omega (A001222) and exactly two odd conjugate prime indices. The version for even Omega is A345962, and the union is A345961. Conjugate prime indices are listed by A321650 and ranked by A122111.

Examples

			The initial terms and their prime indices:
    3: {2}
   12: {1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   48: {1,1,1,1,2}
   70: {1,3,4}
   75: {2,3,3}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
  147: {2,4,4}
  154: {1,4,5}
  192: {1,1,1,1,1,1,2}
  243: {2,2,2,2,2}
  270: {1,2,2,2,3}
  280: {1,1,1,3,4}
  286: {1,5,6}
  300: {1,1,2,3,3}
		

Crossrefs

These partitions are counted by A000097.
The k = 0 version is A000290, counted by A000041.
The k = 1 version is A001105 (reverse: A345958).
The k > 0 version is A026424.
These multisets are counted by A120452.
These are the positions of 2's in A316524 (reverse: A344616).
The k = -1 version is A345959.
The version for reversed alternating sum is A345961.
The k = -2 version is A345962.
A000984/A345909/A345911 count/rank compositions with alternating sum 1.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[primeMS[#]]==2&]

A352131 Number of strict integer partitions of n with same number of even parts as odd conjugate parts.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 4, 5, 5, 5, 6, 7, 7, 8, 10, 10, 10, 12, 14, 15, 14, 17, 21, 20, 20, 25, 28, 28, 29, 34, 39, 39, 40, 47, 52, 53, 56, 64, 70, 71, 77, 86, 92, 97, 104, 114, 122
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2022

Keywords

Examples

			The a(n) strict partitions for selected n:
n = 3      10         14         18         21             24
   ----------------------------------------------------------------------
    (2,1)  (6,4)      (8,6)      (10,8)     (11,10)        (8,7,5,4)
           (4,3,2,1)  (5,4,3,2)  (6,5,4,3)  (8,6,4,3)      (9,8,4,3)
                      (6,5,2,1)  (7,6,3,2)  (8,7,4,2)      (10,8,4,2)
                                 (8,7,2,1)  (10,8,2,1)     (10,9,3,2)
                                            (6,5,4,3,2,1)  (11,10,2,1)
                                                           (8,6,4,3,2,1)
		

Crossrefs

This is the strict case of A277579, ranked by A349157 (zeros of A350849).
The conjugate version is A352130, non-strict A277579 (ranked by A350943).
A000041 counts integer partitions, strict A000009.
A130780 counts partitions with no more even than odd parts, strict A239243.
A171966 counts partitions with no more odd than even parts, strict A239240.
There are four statistics:
- A257991 = # of odd parts, conjugate A344616.
- A257992 = # of even parts, conjugate A350847.
There are four other pairings of statistics:
- A045931, ranked by A325698, strict A239241.
- A045931, ranked by A350848, strict A352129.
- A277103, ranked by A350944.
- A350948, ranked by A350945.
There are three double-pairings of statistics:
- A351976, ranked by A350949.
- A351977, ranked by A350946, strict A352128.
- A351981, ranked by A351980.
The case of all four statistics equal is A351978, ranked by A350947.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]

A357705 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 3, 1, 2, 0, 1, 0, 3, 2, 3, 2, 0, 1, 0, 4, 2, 4, 1, 3, 0, 1, 0, 4, 3, 3, 6, 2, 3, 0, 1, 0, 5, 3, 5, 3, 7, 2, 4, 0, 1, 0, 5, 4, 5, 4, 9, 7, 3, 4, 0, 1, 0, 6, 4, 7, 3, 12, 5, 10, 3, 5, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  0  1
  0  2  2  0  1
  0  3  1  2  0  1
  0  3  2  3  2  0  1
  0  4  2  4  1  3  0  1
  0  4  3  3  6  2  3  0  1
  0  5  3  5  3  7  2  4  0  1
  0  5  4  5  4  9  7  3  4  0  1
  0  6  4  7  3 12  5 10  3  5  0  1
  0  6  5  7  5 10 16  7 11  4  5  0  1
  0  7  5  9  5 14 11 18  7 14  4  6  0  1
Row n = 7 counts the following reversed partitions:
  .  (16)   (25)   (34)       (1123)  (1114)   .  (7)
     (115)  (223)  (1222)             (11113)
     (124)         (111112)           (11122)
     (133)         (1111111)
		

Crossrefs

Row sums are A000041.
First nonzero entry of each row is A004526.
The central column is A357640, half A357639.
For original alternating sum we have A344651, ordered A097805.
The half-alternating version is A357704.
The ordered non-reverse version (compositions) is A357646, half A357645.
The non-reverse version is A357638, half A357637.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[Reverse/@IntegerPartitions[n],skats[#]==k&]],{n,0,11},{k,-n,n,2}]

A345926 Number of distinct possible alternating sums of permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2021

Keywords

Comments

First differs from A096825 at a(90) = 3, A096825(90) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also the number of possible values of A056239(d) where d is a divisor of n with half as many prime factors (rounded up) as n.

Examples

			Grouping the 12 permutations of {1,2,2,3} by alternating sum k gives:
  k = -2: (1223) (1322) (2213) (2312)
  k =  0: (1232) (2123) (2321) (3212)
  k =  2: (2132) (2231) (3122) (3221)
so a(90) = 3.
		

Crossrefs

The version for prime factors instead of indices is A343943.
A000005 counts divisors.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001414 adds up prime factors, row sums of A027746.
A056239 adds up prime indices, row sums of A112798.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by length and alternating sum.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Union[ats/@Permutations[primeMS[n]]]],{n,100}]
  • Python
    from sympy import factorint, primepi
    from sympy.utilities.iterables import multiset_combinations
    def A345926(n):
        fs = dict((primepi(a),b) for (a,b) in factorint(n).items())
        return len(set(sum(d) for d in multiset_combinations(fs, (sum(fs.values())+1)//2))) # Chai Wah Wu, Aug 23 2021

A345962 Numbers whose prime indices have alternating sum -2.

Original entry on oeis.org

10, 21, 40, 55, 84, 90, 91, 160, 187, 189, 210, 220, 247, 250, 336, 360, 364, 391, 462, 490, 495, 525, 551, 640, 713, 748, 756, 810, 819, 840, 858, 880, 988, 1000, 1029, 1073, 1155, 1210, 1271, 1326, 1344, 1375, 1440, 1456, 1564, 1591, 1683, 1690, 1701, 1848
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also numbers with even Omega (A001222) and exactly two odd conjugate prime indices. The case of odd Omega is A345960, and the union is A345961.

Examples

			The initial terms and their prime indices:
   10: {1,3}
   21: {2,4}
   40: {1,1,1,3}
   55: {3,5}
   84: {1,1,2,4}
   90: {1,2,2,3}
   91: {4,6}
  160: {1,1,1,1,1,3}
  187: {5,7}
  189: {2,2,2,4}
  210: {1,2,3,4}
  220: {1,1,3,5}
  247: {6,8}
  250: {1,3,3,3}
  336: {1,1,1,1,2,4}
  360: {1,1,1,2,2,3}
		

Crossrefs

Below we use k to indicate alternating sum.
The k = 0 version is A000290, counted by A000041.
The k = 1 version is A001105 (reverse: A345958).
The k > 0 version is A026424.
These are the positions of -2's in A316524.
These multisets are counted by A344741 (positive 2: A120452).
The k = -1 version is A345959.
The k = 2 version is A345960, counted by A000097.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[primeMS[#]]==-2&]

A357847 Number of integer compositions of n whose length is twice their alternating sum.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 3, 1, 8, 11, 15, 46, 59, 127, 259, 407, 888, 1591, 2925, 5896, 10607, 20582, 39446, 73448, 142691, 269777, 513721, 988638, 1876107, 3600313, 6893509, 13165219, 25288200, 48408011, 92824505, 178248758, 341801149, 656641084, 1261298356
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2022

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(0) = 1 through a(9) = 15 compositions:
  ()  .  .  (21)  .  (32)  (1131)  (43)  (1142)  (54)
                           (2121)        (1241)  (111141)
                           (3111)        (2132)  (112131)
                                         (2231)  (113121)
                                         (3122)  (114111)
                                         (3221)  (211131)
                                         (4112)  (212121)
                                         (4211)  (213111)
                                                 (311121)
                                                 (312111)
                                                 (411111)
		

Crossrefs

The version for partitions is A357709, ranked by A357848.
A011782 counts compositions.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.
A357182 counts compositions w/ length = alternating sum, ranked by A357184.
A357189 counts partitions w/ length = alternating sum, ranked by A357486.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],Length[#]==2ats[#]&]],{n,0,10}]

Extensions

a(21)-a(38) from Alois P. Heinz, Oct 19 2022
Previous Showing 41-50 of 54 results. Next