A366366
G.f. satisfies A(x) = (1 + x/A(x)^4)/(1 - x).
Original entry on oeis.org
1, 2, -6, 58, -574, 6402, -75878, 939290, -12000318, 157050178, -2094657926, 28368411194, -389079656446, 5393118559938, -75431624084838, 1063251390845338, -15088643098754942, 215396586102923138, -3091050571516120582, 44566089825496186170
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(4*k-1, n-k)/(5*k-1));
A107708
Number of paths from (0,0) to (3n,0) that stay in the first quadrant (x,y >= 0) and where each step is (3,0), (2,1), (1,2), or (1,-1).
Original entry on oeis.org
1, 3, 18, 144, 1323, 13176, 138348, 1507977, 16900650, 193536864, 2254630788, 26635735440, 318350663748, 3842488208997, 46770206742342, 573435609537600, 7075551692662875, 87794803094586336, 1094807464312435344
Offset: 0
a(1)=3 because we have H, uD and Udd, where H=(3,0), u=(2,1), U=(1,2) and D=(1,-1).
- G. C. Greubel, Table of n, a(n) for n = 0..880
- Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370.
- M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1.
-
a:=n->(1/n)*sum(3^j*binomial(n,j)*binomial(n+j,2*n+1-j),j=ceil((n+1)/2)..n): 1,seq(a(n),n=1..22);
-
Flatten[{1,Table[1/n*Sum[3^j*Binomial[n, j]*Binomial[n+j, 2n+1-j], {j,Floor[(n+1)/2],n}],{n,1,20}]}] (* Vaclav Kotesovec, Mar 17 2014 *)
-
concat([1], for(n=1,50, print1((1/n)*sum(j=floor((n+1)/2),n, 3^j*binomial(n,j)*binomial(n+j,2*n+1-j)), ", "))) \\ G. C. Greubel, Mar 16 2017
A348793
G.f. A(x) satisfies A(x) = (1 + x * A(x)^3) / (1 - 2 * x).
Original entry on oeis.org
1, 3, 15, 102, 807, 6951, 63240, 597864, 5815167, 57815553, 584919951, 6002197914, 62321630100, 653553174756, 6912106219176, 73642451396160, 789642274208271, 8515008918555573, 92281921130853213, 1004600177464845450, 10980406558088695599, 120454756647900759543
Offset: 0
-
nmax = 21; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = 2 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 21}]
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(n, k)*binomial(n+2*k+1, n)/(n+2*k+1)); \\ Seiichi Manyama, Jul 24 2023
A348912
G.f. A(x) satisfies A(x) = (1 + 2 * x * A(x)^3) / (1 - x).
Original entry on oeis.org
1, 3, 21, 201, 2217, 26535, 335001, 4391553, 59203137, 815580507, 11430639165, 162470033625, 2336381642649, 33930648153615, 496935405133617, 7331179445170689, 108846406625097729, 1625145134034548019, 24385673680861258533, 367546405595389076649, 5561980053932228243529
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = (1 + 2 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
-
a(n) = sum(k=0, n, 2^k*binomial(n, k)*binomial(n+2*k+1, n)/(n+2*k+1)); \\ Seiichi Manyama, Jul 24 2023
A363380
G.f. satisfies A(x) = 1 + x * A(x)^4 * (1 + A(x)^2).
Original entry on oeis.org
1, 2, 20, 284, 4712, 85392, 1638112, 32699472, 672188768, 14133399744, 302535052160, 6570819330688, 144442463464704, 3207564324825600, 71848240540852224, 1621452789508328704, 36831997860270007808, 841470878382566444032
Offset: 0
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+2*k+1, n)/(4*n+2*k+1));
A378236
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(n+2*r+k,n)/(n+2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 8, 0, 1, 6, 20, 44, 0, 1, 8, 36, 120, 280, 0, 1, 10, 56, 236, 800, 1936, 0, 1, 12, 80, 400, 1656, 5696, 14128, 0, 1, 14, 108, 620, 2960, 12192, 42416, 107088, 0, 1, 16, 140, 904, 4840, 22592, 92960, 326304, 834912, 0, 1, 18, 176, 1260, 7440, 38352, 176800, 727824, 2572992, 6652608, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 8, 20, 36, 56, 80, 108, ...
0, 44, 120, 236, 400, 620, 904, ...
0, 280, 800, 1656, 2960, 4840, 7440, ...
0, 1936, 5696, 12192, 22592, 38352, 61248, ...
0, 14128, 42416, 92960, 176800, 308560, 507152, ...
-
T(n, k, t=1, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A364552
G.f. satisfies A(x) = 1 + x*A(x) + x^4*A(x)^3.
Original entry on oeis.org
1, 1, 1, 1, 2, 5, 11, 21, 39, 78, 169, 373, 808, 1727, 3719, 8153, 18100, 40315, 89770, 200250, 448755, 1010685, 2284295, 5173961, 11740697, 26699780, 60863291, 139045991, 318247190, 729572315, 1675085099, 3851795549, 8869990949, 20453679944, 47223844863
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-k, 3*k)*binomial(3*k, k)/(2*k+1));
A366178
G.f. A(x) satisfies A(x) = 1/(1 - x) + x*A(x)^3/(1 - x)^3.
Original entry on oeis.org
1, 2, 10, 67, 502, 4045, 34279, 301232, 2720266, 25091431, 235394601, 2239139980, 21546299491, 209361514219, 2051379996574, 20245794958408, 201079938971546, 2008276118393320, 20157131084034349, 203215717750220949, 2056913539436637829
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k, n-k)*binomial(3*k, k)/(2*k+1));
A371655
G.f. satisfies A(x) = 1 + x * A(x) * (1 + A(x))^2.
Original entry on oeis.org
1, 4, 32, 336, 4032, 52352, 716032, 10161408, 148229120, 2208921600, 33482670080, 514630230016, 8001860567040, 125640146354176, 1989285578473472, 31725578742464512, 509178657425326080, 8217766225008656384, 133287551280741351424, 2171450128344786403328
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, (n-1)\2, 4^(n-k)*binomial(n, k)*binomial(2*n-k, n-1-2*k))/n);
A349514
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - 3 * x).
Original entry on oeis.org
1, 4, 24, 192, 1792, 18240, 196224, 2194176, 25247232, 296979456, 3555010560, 43165900800, 530362220544, 6581594275840, 82373440339968, 1038579580796928, 13179023462498304, 168183976239562752, 2157085003249876992, 27790652486543474688, 359485965093121818624
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = 3 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
Table[Sum[Binomial[n + 2 k, 3 k] Binomial[3 k, k] 3^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n+2*k,3*k) * binomial(3*k,k) * 3^(n-k) / (2*k+1)) \\ Andrew Howroyd, Nov 20 2021