cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2021

Keywords

Comments

First differs from A348383 at a(216) = 27, A348383(216) = 28.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
These permutations are ordered factorizations of n with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins for n > 0 is a(n) + 1 if n is a perfect square; otherwise a(n).

Examples

			The factorizations for n = 4, 12, 24, 30, 36, 48, 60, 64, 72:
  4    12     24     30     36       48       60       64       72
  2*2  2*6    3*8    5*6    4*9      6*8      2*30     8*8      8*9
       3*4    4*6    2*15   6*6      2*24     3*20     2*32     2*36
       2*2*3  2*12   3*10   2*18     3*16     4*15     4*16     3*24
              2*2*6  2*3*5  3*12     4*12     5*12     2*4*8    4*18
              2*3*4         2*2*9    2*3*8    6*10     2*2*16   6*12
                            2*3*6    2*4*6    2*5*6    2*2*4*4  2*4*9
                            3*3*4    3*4*4    3*4*5             2*6*6
                            2*2*3*3  2*2*12   2*2*15            3*3*8
                                     2*2*3*4  2*3*10            3*4*6
                                              2*2*3*5           2*2*18
                                                                2*3*12
                                                                2*2*3*6
                                                                2*3*3*4
                                                                2*2*2*3*3
The a(270) = 19 factorizations:
  (2*3*5*9)   (5*6*9)   (3*90)   (270)
  (3*3*5*6)   (2*3*45)  (5*54)
  (2*3*3*15)  (2*5*27)  (6*45)
              (2*9*15)  (9*30)
              (3*3*30)  (10*27)
              (3*5*18)  (15*18)
              (3*6*15)  (2*135)
              (3*9*10)
Note that (2*3*3*3*5) is separable but has no alternating permutations.
		

Crossrefs

Partitions not of this type are counted by A344654, ranked by A344653.
Partitions of this type are counted by A344740, ranked by A344742.
The complement is counted by A347706, without twins A348380.
The case without twins is A348379.
Dominates A348383, the separable case.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}]]],{n,100}]

Formula

For n > 1, a(n) = A335434(n) + A010052(n).

A349050 Number of multisets of size n that have no alternating permutations and cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 12, 20, 32, 48, 80, 112, 192, 256, 448, 576, 1024, 1280, 2304, 2816, 5120, 6144, 11264, 13312, 24576, 28672, 53248, 61440, 114688, 131072, 245760, 278528, 524288, 589824, 1114112, 1245184, 2359296, 2621440, 4980736, 5505024
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The multiset {1,2,2,2,2,3,3} has no alternating permutations, even though it does have the three anti-run permutations (2,1,2,3,2,3,2), (2,3,2,1,2,3,2), (2,3,2,3,2,1,2), so is counted under a(7).
The a(2) = 1 through a(7) = 12 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                       {12223}  {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1122223}
                                {122223}  {1222222}
                                {123333}  {1222223}
                                          {1222233}
                                          {1222234}
                                          {1233333}
                                          {1233334}
As compositions:
  (2)  (3)  (4)    (5)      (6)      (7)
            (1,3)  (1,4)    (1,5)    (1,6)
            (3,1)  (4,1)    (2,4)    (2,5)
                   (1,3,1)  (4,2)    (5,2)
                            (5,1)    (6,1)
                            (1,1,4)  (1,1,5)
                            (1,4,1)  (1,4,2)
                            (4,1,1)  (1,5,1)
                                     (2,4,1)
                                     (5,1,1)
                                     (1,1,4,1)
                                     (1,4,1,1)
		

Crossrefs

The case of weakly decreasing multiplicities is A025065.
The inseparable case is A336102.
A separable instead of alternating version is A336103.
The version for partitions is A345165.
The version for factorizations is A348380, complement A348379.
The complement (still covering an initial interval) is counted by A349055.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A344654 counts partitions w/o an alternating permutation, ranked by A344653.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n],Select[Permutations[#],wigQ]=={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 0, if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-1)/2-2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349055(n).
a(n) = (n+2)*2^(n/2-3) for even n > 0; a(n) = (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A345195 Number of non-alternating anti-run compositions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 4, 10, 23, 49, 96, 192, 368, 692, 1299, 2403, 4400, 8029, 14556, 26253, 47206, 84574, 151066, 269244, 478826, 849921, 1506309, 2665829, 4711971, 8319763, 14675786, 25865400, 45552678, 80171353, 141015313, 247905305, 435614270, 765132824
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
An anti-run (separation or Carlitz composition) is a sequence with no adjacent equal parts.

Examples

			The a(9) = 23 anti-runs:
  (1,2,6)  (1,2,4,2)  (1,2,1,2,3)
  (1,3,5)  (1,2,5,1)  (1,2,3,1,2)
  (2,3,4)  (1,3,4,1)  (1,2,3,2,1)
  (4,3,2)  (1,4,3,1)  (1,3,2,1,2)
  (5,3,1)  (1,5,2,1)  (2,1,2,3,1)
  (6,2,1)  (2,1,2,4)  (2,1,3,2,1)
           (2,4,2,1)  (3,2,1,2,1)
           (3,1,2,3)
           (3,2,1,3)
           (4,2,1,2)
		

Crossrefs

Non-anti-run compositions are counted by A261983.
A version counting partitions is A345166, ranked by A345173.
These compositions are ranked by A345169.
Non-alternating compositions are counted by A345192, ranked by A345168.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices, w/ twins A344606.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A345194 counts alternating patterns (with twins: A344605).

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], sepQ[#]&&!wigQ[#]&]],{n,0,15}]

Formula

a(n) = A003242(n) - A025047(n).

Extensions

a(21) onwards from Andrew Howroyd, Jan 31 2024

A349055 Number of multisets of size n that have an alternating permutation and cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 24, 52, 108, 224, 464, 944, 1936, 3904, 7936, 15936, 32192, 64512, 129792, 259840, 521472, 1043456, 2091008, 4183040, 8375296, 16752640, 33525760, 67055616, 134156288, 268320768, 536739840, 1073496064, 2147205120, 4294443008, 8589344768
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.
The multisets that have an alternating permutation are those which have no part with multiplicity greater than floor(n/2) except for odd n when either the smallest or largest part can have multiplicity ceiling(n/2). - Andrew Howroyd, Jan 13 2024

Examples

			The multiset {1,2,2,3} has alternating permutations (2,1,3,2), (2,3,1,2), so is counted under a(4).
The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
As compositions:
  (1)  (1,1)  (1,2)    (2,2)      (2,3)
              (2,1)    (1,1,2)    (3,2)
              (1,1,1)  (1,2,1)    (1,1,3)
                       (2,1,1)    (1,2,2)
                       (1,1,1,1)  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
		

Crossrefs

The strong inseparable case is A025065.
A separable instead of alternating version is A336103, complement A336102.
The case of weakly decreasing multiplicities is A336106.
The version for non-twin partitions is A344654, ranked by A344653.
The complement for non-twin partitions is A344740, ranked by A344742.
The complement for partitions is A345165, ranked by A345171.
The version for partitions is A345170, ranked by A345172.
The version for factorizations is A348379, complement A348380.
The complement (still covering an initial interval) is counted by A349050.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n], Select[Permutations[#],wigQ]!={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 1, 2^(n-1) - if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-5)/2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349050(n).
a(n) = 2^(n-1) - (n+2)*2^(n/2-3) for even n > 0; a(n) = 2^(n-1) - (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A349059 Number of weakly alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 18, 2, 3, 4, 8, 1, 11, 1, 16, 3, 3, 3, 22, 1, 3, 3, 18, 1, 11, 1, 8, 8, 3, 1, 38, 2, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 32, 1, 3, 8, 28, 3, 11, 1, 8, 3, 11, 1, 56, 1, 3, 8, 8, 3, 11, 1, 38, 8, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The ordered factorizations for n = 2, 4, 6, 8, 12, 24, 30:
  (2)  (4)    (6)    (8)      (12)     (24)       (30)
       (2*2)  (2*3)  (2*4)    (2*6)    (3*8)      (5*6)
              (3*2)  (4*2)    (3*4)    (4*6)      (6*5)
                     (2*2*2)  (4*3)    (6*4)      (10*3)
                              (6*2)    (8*3)      (15*2)
                              (2*2*3)  (12*2)     (2*15)
                              (2*3*2)  (2*12)     (3*10)
                              (3*2*2)  (2*2*6)    (2*5*3)
                                       (2*4*3)    (3*2*5)
                                       (2*6*2)    (3*5*2)
                                       (3*2*4)    (5*2*3)
                                       (3*4*2)
                                       (4*2*3)
                                       (6*2*2)
                                       (2*2*2*3)
                                       (2*2*3*2)
                                       (2*3*2*2)
                                       (3*2*2*2)
		

Crossrefs

The strong version for compositions is A025047, also A025048, A025049.
The strong case is A348610, complement A348613.
The version for compositions is A349052, complement A349053.
As compositions these are ranked by the complement of A349057.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A335434 counts separable factorizations, complement A333487.
A345164 counts alternating permutations of prime factors, w/ twins A344606.
A345170 counts partitions with an alternating permutation.
A348379 = factorizations w/ alternating permutation, complement A348380.
A348611 counts anti-run ordered factorizations, complement A348616.
A349060 counts weakly alternating partitions, complement A349061.
A349800 = weakly but not strongly alternating compositions, ranked A349799.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]], {m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@facs[n], whkQ[#]||whkQ[-#]&]],{n,100}]

Formula

a(2^n) = A349052(n).

A348377 Number of non-alternating compositions of n, excluding twins (x,x).

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 19, 45, 98, 208, 436, 906, 1861, 3803, 7731, 15659, 31628, 63747, 128257, 257722, 517338, 1037652, 2079983, 4167325, 8346203, 16710572, 33449694, 66944254, 133959020, 268028868, 536231902, 1072737537, 2145905284, 4292486690, 8586035992
Offset: 0

Views

Author

Gus Wiseman, Oct 26 2021

Keywords

Comments

First differs from A348382 at a(6) = 19, A348382(6) = 17. The two non-alternating non-twin compositions of 6 that are not an anti-run are (1,2,3) and (3,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(3) = 1 through a(6) = 19 compositions:
  (1,1,1)  (1,1,2)    (1,1,3)      (1,1,4)
           (2,1,1)    (1,2,2)      (1,2,3)
           (1,1,1,1)  (2,2,1)      (2,2,2)
                      (3,1,1)      (3,2,1)
                      (1,1,1,2)    (4,1,1)
                      (1,1,2,1)    (1,1,1,3)
                      (1,2,1,1)    (1,1,2,2)
                      (2,1,1,1)    (1,1,3,1)
                      (1,1,1,1,1)  (1,2,2,1)
                                   (1,3,1,1)
                                   (2,1,1,2)
                                   (2,2,1,1)
                                   (3,1,1,1)
                                   (1,1,1,1,2)
                                   (1,1,1,2,1)
                                   (1,1,2,1,1)
                                   (1,2,1,1,1)
                                   (2,1,1,1,1)
                                   (1,1,1,1,1,1)
		

Crossrefs

The version for patterns is A000670(n) - A344605(n).
Non-twin compositions are counted by A051049.
The complement is counted by A344604.
An unordered version is A344654.
The complement is ranked by A345167 \/ A007582.
These compositions are ranked by A345168 \ A007582.
Including twins gives A345192, complement A025047.
The version for factorizations is A347706, or A348380 with twins.
The non-anti-run case is A348382.
A001250 counts alternating permutations.
A011782 counts compositions, strict A032020.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A261983 counts non-anti-run compositions, complement A003242.
A325535 counts inseparable partitions, ranked by A335448.
A344614 counts compositions avoiding (1,2,3) and (3,2,1) adjacent.
A345165 = partitions with no alternating permutations, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,0,15}]

Formula

For n > 0, a(n) = A345192(n) - 1 if n is even; otherwise A345192(n).

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A348609 Numbers with a separable factorization without an alternating permutation.

Original entry on oeis.org

216, 270, 324, 378, 432, 486, 540, 594, 640, 648, 702, 756, 768, 810, 864, 896, 918, 960, 972, 1024, 1026, 1080, 1134, 1152, 1188, 1242, 1280, 1296, 1344, 1350, 1404, 1408, 1458, 1500, 1512, 1536, 1566, 1620, 1664, 1674, 1728, 1750, 1782, 1792, 1836, 1890
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of sets.
Note that 216 has separable prime factorization (2*2*2*3*3*3) with an alternating permutation, but the separable factorization (2*3*3*3*4) is has no alternating permutation. See also A345173.

Examples

			The terms and their prime factorizations begin:
  216 = 2*2*2*3*3*3
  270 = 2*3*3*3*5
  324 = 2*2*3*3*3*3
  378 = 2*3*3*3*7
  432 = 2*2*2*2*3*3*3
  486 = 2*3*3*3*3*3
  540 = 2*2*3*3*3*5
  594 = 2*3*3*3*11
  640 = 2*2*2*2*2*2*2*5
  648 = 2*2*2*3*3*3*3
  702 = 2*3*3*3*13
  756 = 2*2*3*3*3*7
  768 = 2*2*2*2*2*2*2*2*3
  810 = 2*3*3*3*3*5
  864 = 2*2*2*2*2*3*3*3
		

Crossrefs

Partitions of this type are counted by A345166, ranked by A345173 (a superset).
Compositions of this type are counted by A345195, ranked by A345169.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A025047 counts alternating compositions, complement A345192, ranked by A345167.
A335434 counts separable factorizations, with twins A348383, complement A333487.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions w/o an alternating permutation, complement A345170.
A347438 counts factorizations with alternating product 1, additive A119620.
A348379 counts factorizations w/ an alternating permutation, complement A348380.
A348610 counts alternating ordered factorizations, complement A348613.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[1000],Function[n,Select[facs[n],sepQ[#]&&Select[Permutations[#],wigQ]=={}&]!={}]]

A348381 Number of inseparable factorizations of n that are not a twin (x*x).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347706 at a(216) = 3, A347706(216) = 4.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is inseparable if it has no permutation that is an anti-run, meaning there are always adjacent equal parts. Alternatively, a multiset is inseparable if its maximal multiplicity is at most one plus the sum of its remaining multiplicities.

Examples

			The a(n) factorizations for n = 96, 192, 384, 576:
  2*2*2*12      3*4*4*4         4*4*4*6           4*4*4*9
  2*2*2*2*6     2*2*2*24        2*2*2*48          2*2*2*72
  2*2*2*2*2*3   2*2*2*2*12      2*2*2*2*24        2*2*2*2*36
                2*2*2*2*2*6     2*2*2*2*3*8       2*2*2*2*4*9
                2*2*2*2*3*4     2*2*2*2*4*6       2*2*2*2*6*6
                2*2*2*2*2*2*3   2*2*2*2*2*12      2*2*2*2*2*18
                                2*2*2*2*2*2*6     2*2*2*2*3*12
                                2*2*2*2*2*3*4     2*2*2*2*2*2*9
                                2*2*2*2*2*2*2*3   2*2*2*2*2*3*6
                                                  2*2*2*2*2*2*3*3
		

Crossrefs

Positions of nonzero terms are A046099.
Partitions not of this type are counted by A325534 - A000035.
Partitions of this type are counted by A325535 - A000035.
Allowing twins gives A333487.
The case without an alternating permutation is A347706, with twins A348380.
The complement is counted by A348383, without twins A335434.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations of sets.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A344654 counts non-twin partitions without an alternating permutation.
A348382 counts non-anti-run compositions that are not a twin.
A348611 counts anti-run ordered factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],!MatchQ[#,{x_,x_}]&&Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]

Formula

a(n > 1) = A333487(n) - A010052(n).
a(2^n) = A325535(n) - 1 for odd n, otherwise A325535(n).

A348383 Number of factorizations of n that are either separable (have an anti-run permutation) or are a twin (x*x).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347050 at a(216) = 28, A347050(216) = 27.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one.

Examples

			The a(216) = 28 factorizations:
  (2*2*2*3*3*3)  (2*2*2*3*9)  (2*2*6*9)   (3*8*9)   (3*72)   (216)
                 (2*2*3*3*6)  (2*3*4*9)   (4*6*9)   (4*54)
                 (2*3*3*3*4)  (2*3*6*6)   (2*2*54)  (6*36)
                              (3*3*4*6)   (2*3*36)  (8*27)
                              (2*2*3*18)  (2*4*27)  (9*24)
                              (2*3*3*12)  (2*6*18)  (12*18)
                                          (2*9*12)  (2*108)
                                          (3*3*24)
                                          (3*4*18)
                                          (3*6*12)
The a(270) = 20 factorizations:
  (2*3*3*3*5)  (2*3*5*9)   (5*6*9)   (3*90)   (270)
               (3*3*5*6)   (2*3*45)  (5*54)
               (2*3*3*15)  (2*5*27)  (6*45)
                           (2*9*15)  (9*30)
                           (3*3*30)  (10*27)
                           (3*5*18)  (15*18)
                           (3*6*15)  (2*135)
                           (3*9*10)
		

Crossrefs

Positions of 1's are 1 and A000040.
Not requiring separability gives A010052 for n > 1.
Positions of 2's are A323644.
Partitions of this type are counted by A325534(n) + A000035(n + 1).
Partitions of this type are ranked by A335433 \/ A001248.
Partitions not of this type are counted by A325535(n) - A000035(n + 1).
Partitions not of this type are ranked by A345193 = A335448 \ A001248.
Not allowing twins gives A335434, complement A333487,
The case with an alternating permutation is A347050, no twins A348379.
The case without an alternating permutation is A347706, no twins A348380.
The complement is counted by A348381.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A003242 counts anti-run compositions, ranked by A333489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    Table[Length[Select[facs[n],MatchQ[#,{x_,x_}]||sepQ[#]&]],{n,100}]

Formula

a(n > 1) = A335434(n) + A010052(n), where A010052(n) = 1 if n is a perfect square, otherwise 0.

A350139 Number of non-weakly alternating ordered factorizations of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 12, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 20, 0, 0, 0, 0, 0, 2, 0, 10, 0, 0, 0, 12, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

The first odd term is a(180) = 69, which has, for example, the non-weakly alternating ordered factorization 2*3*5*3*2.
An ordered factorization of n is a finite sequence of positive integers > 1 with product n. Ordered factorizations are counted by A074206.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(n) ordered factorizations for n = 24, 36, 48, 60:
  (2*3*4)  (2*3*6)    (2*3*8)    (2*5*6)
  (4*3*2)  (6*3*2)    (2*4*6)    (3*4*5)
           (2*3*3*2)  (6*4*2)    (5*4*3)
           (3*2*2*3)  (8*3*2)    (6*5*2)
                      (2*2*3*4)  (10*3*2)
                      (2*3*4*2)  (2*3*10)
                      (2*4*3*2)  (2*2*3*5)
                      (3*2*2*4)  (2*3*5*2)
                      (4*2*2*3)  (2*5*3*2)
                      (4*3*2*2)  (3*2*2*5)
                                 (5*2*2*3)
                                 (5*3*2*2)
		

Crossrefs

Positions of nonzero terms are A122181.
The strong version for compositions is A345192, ranked by A345168.
The strong case is A348613, complement A348610.
The version for compositions is A349053, complement A349052.
As compositions with ones allowed these are ranked by A349057.
The complement is counted by A349059.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A025047 counts weakly alternating compositions, ranked by A345167.
A335434 counts separable factorizations, complement A333487.
A345164 counts alternating perms of prime factors, with twins A344606.
A345170 counts partitions with an alternating permutation.
A348379 counts factorizations w/ alternating perm, complement A348380.
A348611 counts anti-run ordered factorizations, complement A348616.
A349060 counts weakly alternating partitions, complement A349061.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@facs[n],!whkQ[#]&&!whkQ[-#]&]],{n,100}]

Formula

a(2^n) = A349053(n).
Previous Showing 11-20 of 21 results. Next