cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A346626 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - x).

Original entry on oeis.org

1, 2, 8, 44, 280, 1936, 14128, 107088, 834912, 6652608, 53934080, 443467136, 3689334272, 30997608960, 262651640064, 2241857334528, 19257951946240, 166362924583936, 1444351689281536, 12595885932259328, 110287974501355520, 969178569410404352, 8544982917273509888, 75565732555028701184
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 25 2021

Keywords

Comments

Partial sums of A213282.

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 23; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 - x)^(3 k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 23}]

Formula

G.f.: Sum_{k>=0} ( binomial(3*k,k) / (2*k + 1) ) * x^k / (1 - x)^(3*k+1).
a(0) = 1; a(n) = a(n-1) + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) ~ 2^(n - 1/2) / (sqrt(3*Pi*(2 - (2 - sqrt(2))^(1/3)/2^(2/3) - 1/(2*(2 - sqrt(2)))^(1/3))) * n^(3/2) * (2 - 3/(sqrt(2) - 1)^(1/3) + 3*(sqrt(2) - 1)^(1/3))^n). - Vaclav Kotesovec, Nov 04 2021
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} 2^(n-k) * binomial(n,k) * binomial(2*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 01 2024

A349310 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^4) / (1 - x).

Original entry on oeis.org

1, 2, 10, 74, 642, 6082, 60970, 635818, 6826690, 74958914, 837833482, 9500939978, 109037364930, 1264049402754, 14780619799722, 174121322204074, 2064572904600706, 24620095821589378, 295087003429677322, 3552841638851183690, 42950428996378731010
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = (1 + x A[x]^4)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n + 3 k, 4 k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k,4*k) * binomial(4*k,k) / (3*k+1).
a(n) = F([(1+n)/3, (2+n)/3, (3+n)/3, -n], [2/3, 1, 4/3], -1), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 14 2021
a(n) ~ sqrt(1 + 3*r) / (2^(13/6) * sqrt(3*Pi) * (1-r)^(1/6) * n^(3/2) * r^(n + 1/3)), where r = 0.0766602099042102089064087954661556186872273232742446843... is the smallest real root of the equation 3^3 * (1-r)^4 = 4^4 * r. - Vaclav Kotesovec, Nov 15 2021

A349311 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^5) / (1 - x).

Original entry on oeis.org

1, 2, 12, 112, 1232, 14832, 189184, 2512064, 34358784, 480745984, 6848734464, 99003237376, 1448575666176, 21411827808256, 319255531155456, 4796005997940736, 72520546008219648, 1102912584949792768, 16859182461720526848, 258886644574700699648
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = (1 + x A[x]^5)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n + 4 k, 5 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 19}]

Formula

a(n) = Sum_{k=0..n} binomial(n+4*k,5*k) * binomial(5*k,k) / (4*k+1).
a(n) = F([(1+n)/4, (2+n)/4, (3+n)/4, (4+n)/4, -n], [1/2, 3/4, 1, 5/4], -1), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 14 2021
a(n) ~ sqrt(1 + 4*r) / (2 * 5^(3/4) * sqrt(2*Pi) * (1-r)^(1/4) * n^(3/2) * r^(n + 1/4)), where r = 0.0600920016324256496641829206872407657377702010870270617... is the real root of the equation 4^4 * (1-r)^5 = 5^5 * r. - Vaclav Kotesovec, Nov 15 2021

A349313 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^7) / (1 - x).

Original entry on oeis.org

1, 2, 16, 212, 3320, 57024, 1038928, 19718512, 385668448, 7718866880, 157326086656, 3254310606208, 68142850580480, 1441588339943168, 30765576147680000, 661561298256228096, 14319744815795062272, 311756656998135770112, 6822215641015820419072
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; A[] = 0; Do[A[x] = (1 + x A[x]^7)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n + 6 k, 7 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} binomial(n+6*k,7*k) * binomial(7*k,k) / (6*k+1).
a(n) = F([(1+n)/6, (2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6, -n], [1/3, 1/2, 2/3, 5/6, 1, 7/6], -1), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 14 2021
a(n) ~ sqrt(1 + 6*r) / (2 * 7^(2/3) * sqrt(3*Pi) * (1-r)^(1/3) * n^(3/2) * r^(n + 1/6)), where r = 0.04196526794785323647696104132939153750367778616407409162... is the real root of the equation 6^6 * (1-r)^7 = 7^7 * r. - Vaclav Kotesovec, Nov 15 2021

A366363 G.f. satisfies A(x) = (1 + x/A(x))/(1 - x).

Original entry on oeis.org

1, 2, 0, 4, -8, 32, -112, 432, -1696, 6848, -28160, 117632, -497664, 2128128, -9183488, 39940864, -174897664, 770452480, -3411959808, 15181264896, -67833868288, 304256253952, -1369404661760, 6182858317824, -27995941060608, 127100310290432, -578433619525632
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A366363[n_]:=(-1)^(n-1)Sum[Binomial[2k-1,k]Binomial[k-1,n-k]/(2k-1),{k,0,n}];
    Array[A366363,30,0] (* Paolo Xausa, Oct 20 2023 *)
  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(k-1, n-k)/(2*k-1));

Formula

G.f.: A(x) = -2*x / (1-sqrt(1+4*x*(1-x))).
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(2*k-1,k) * binomial(k-1,n-k)/(2*k-1).

A366364 G.f. satisfies A(x) = (1 + x/A(x)^2)/(1 - x).

Original entry on oeis.org

1, 2, -2, 14, -70, 426, -2714, 18118, -124814, 881042, -6339058, 46318334, -342769750, 2563781690, -19350683018, 147197511222, -1127334112542, 8685458120226, -67270210217186, 523472089991662, -4090668558473318, 32088204418069450, -252576222775705466
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(2*k-1, n-k)/(3*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k-1,k) * binomial(2*k-1,n-k)/(3*k-1).

A349314 G.f. A(x) satisfies: A(x) = (1 + x * A(x)^8) / (1 - x).

Original entry on oeis.org

1, 2, 18, 274, 4930, 97346, 2039570, 44524818, 1001773058, 23065953794, 540886665618, 12872727013522, 310135678438978, 7549240857128258, 185381380643501970, 4586875745951650706, 114244031335228433922, 2862001783406012428802, 72067481493990612275474
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2021

Keywords

Comments

In general, for k > 1, Sum_{j=0..n} binomial(n + (k-1)*j,k*j) * binomial(k*j,j) / ((k-1)*j+1) ~ (1-r)^(1/(k-1) - 1/2) * sqrt(1 + (k-1)*r) / (sqrt(2*Pi*(k-1)) * k^(1/(k-1) + 1/2) * n^(3/2) * r^(n + 1/(k-1))), where r is the smallest real root of the equation (k-1)^(k-1) * (1-r)^k = k^k * r. - Vaclav Kotesovec, Nov 15 2021

Crossrefs

Programs

  • Mathematica
    nmax = 18; A[] = 0; Do[A[x] = (1 + x A[x]^8)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n + 7 k, 8 k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} binomial(n+7*k,8*k) * binomial(8*k,k) / (7*k+1).
a(n) = F([(1+n)/7, (2+n)/7, (3+n)/7, (4+n)/7, (5+n)/7, (6+n)/7, 1+n/7, -n], [2/7, 3/7, 4/7, 5/7, 6/7, 1, 8/7], -1), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 14 2021
a(n) ~ sqrt(1 + 7*r) / (2^(17/7) * sqrt(7*Pi) * (1-r)^(5/14) * n^(3/2) * r^(n + 1/7)), where r = 0.036466941615119756839260438459647497790132092200414533994... is the smallest real root of the equation 7^7 * (1-r)^8 = 8^8 * r. - Vaclav Kotesovec, Nov 15 2021

A364409 G.f. satisfies A(x) = 1 + x*(1 + 1/A(x)^5).

Original entry on oeis.org

1, 2, -10, 110, -1430, 20570, -315282, 5047350, -83406510, 1411954610, -24360750810, 426796726334, -7572551327430, 135790011411850, -2457028916693090, 44804882306441990, -822573909558939998, 15191515999168557410, -282038057756813698730
Offset: 0

Views

Author

Seiichi Manyama, Jul 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(n+5*k-2, n-1))/n);

Formula

G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A349312.
a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(n+5*k-2,n-1) for n > 0.

A364523 G.f. satisfies A(x) = 1 + x*A(x) + x^6*A(x)^6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 931, 1795, 3550, 7736, 18929, 49505, 130000, 330430, 804271, 1885675, 4327555, 9929515, 23224435, 55907251, 138016906, 345107296, 862546231, 2136402451, 5231163232, 12697101118, 30723857209, 74569942745
Offset: 0

Views

Author

Seiichi Manyama, Jul 27 2023

Keywords

Comments

Number of ordered trees with n edges and having nonleaf nodes of outdegrees 1 or 6. - Emanuele Munarini, Jul 11 2024

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\6, binomial(n, 6*k)*binomial(6*k, k)/(5*k+1));

Formula

a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k) * binomial(6*k,k) / (5*k+1).

A366365 G.f. satisfies A(x) = (1 + x/A(x)^3)/(1 - x).

Original entry on oeis.org

1, 2, -4, 32, -240, 2064, -18816, 179264, -1762816, 17758976, -182342400, 1901196288, -20075427840, 214246524928, -2307200135168, 25039992254464, -273603550461952, 3007387399258112, -33230774508716032, 368915340555517952, -4112806343370539008
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(3*k-1, n-k)/(4*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(4*k-1,k) * binomial(3*k-1,n-k)/(4*k-1).
Showing 1-10 of 12 results. Next