A351976
Number of integer partitions of n with (1) as many odd parts as odd conjugate parts and (2) as many even parts as even conjugate parts.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 4, 5, 5, 5, 6, 9, 11, 11, 16, 21, 22, 24, 31, 41, 46, 48, 64, 82, 91, 98, 120, 155, 175, 188, 237, 297, 329, 357, 437, 544, 607, 658, 803, 987, 1098, 1196, 1432, 1749, 1955, 2126, 2541, 3071, 3417, 3729, 4406, 5291, 5890, 6426
Offset: 0
The a(n) partitions for selected n:
n = 3 8 11 12 15 16
----------------------------------------------------------
(21) (332) (4322) (4332) (4443) (4444)
(4211) (4331) (4422) (54321) (53332)
(4421) (4431) (632211) (55222)
(611111) (53211) (633111) (55411)
(621111) (642111) (633211)
(81111111) (642211)
(643111)
(7321111)
(82111111)
These partitions are ranked by
A350949.
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
There are four statistics:
There are four other possible pairings of statistics:
There are two other possible double-pairings of statistics:
-
A351977: # even = # odd, # even conj = # odd conj, ranked by
A350946.
-
A351981: # even = # odd conj, # odd = # even conj, ranked by
A351980.
Cf.
A088218,
A098123,
A130780,
A171966,
A236559,
A236914,
A241638,
A350849,
A350941,
A350942,
A350950,
A350951.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[conj[#],?OddQ]&&Count[#,?EvenQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A351977
Number of integer partitions of n with as many even parts as odd parts and as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 0, 2, 4, 2, 1, 6, 6, 7, 9, 11, 10, 13, 17, 17, 21, 28, 36, 35, 41, 58, 71, 72, 90, 106, 121, 142, 178, 191, 216, 269, 320, 344, 400, 486, 564, 633, 734, 867, 991, 1130, 1312, 1509, 1702, 1978, 2288, 2582, 2917, 3404
Offset: 0
The a(n) partitions for selected n (A..C = 10..12):
n = 3 9 15 18 20
----------------------------------------------------------
(21) (63) (A5) (8433) (8543)
(222111) (632211) (8532) (8741)
(642111) (8631) (C611)
(2222211111) (43322211) (43332221)
(44322111) (44432111)
(44421111) (84221111)
(422222111111)
These partitions are ranked by
A350946.
There are four statistics:
There are four additional pairings of statistics:
There are two additional double-pairings of statistics:
Cf.
A000041,
A000070,
A088218,
A098123,
A130780,
A171966,
A195017,
A236559,
A236914,
A241638,
A350849.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A351978
Number of integer partitions of n for which the number of even parts, the number of odd parts, the number of even conjugate parts, and the number of odd conjugate parts are all equal.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 2, 0, 1, 0, 6, 1, 3, 1, 8, 5, 3, 5, 7, 14, 2, 13, 9, 28, 5, 22, 26, 44, 17, 30, 60, 59, 42, 41, 120, 84, 84, 66, 204, 143, 144, 131, 325, 268, 226, 261, 486, 498, 344, 488, 739, 874
Offset: 0
The a(n) partitions for selected n (A = 10):
n = 3 12 19 21 23 24 27
--------------------------------------------------------------
21 4332 633322 643332 644333 84332211 655443
4431 643321 654321 654332 84441111 655542
644311 665211 654431 85322211 665541
653221 655322 86322111 666333
654211 655421 86421111 666531
664111 664331 A522221111
665321 A622211111
666311
The strict case appears to be the indicator function for
A014105.
These partitions are ranked by
A350947.
There are four statistics:
There are six pairings of statistics:
-
A045931: # of even parts = # of odd parts:
There are three double-pairings of statistics:
A103919 and
A116482 count partitions by sum and number of odd/even parts.
A195017 = # of even parts - # of odd parts.
Cf.
A000070,
A122111,
A130780,
A171966,
A236559,
A236914,
A350849,
A350941,
A350942,
A350950,
A350951.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[#,?OddQ]==Count[conj[#],?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]
A351980
Heinz numbers of integer partitions with as many even parts as odd conjugate parts and as many odd parts as even conjugate parts.
Original entry on oeis.org
1, 6, 84, 126, 140, 210, 490, 525, 686, 875, 1404, 1456, 2106, 2184, 2288, 2340, 3432, 3510, 5460, 6760, 7644, 8190, 8580, 8775, 9100, 9464, 11466, 12012, 12740, 12870, 13650, 14300, 14625, 15808, 18018, 18468, 19110, 19152, 20020, 20672, 21450, 22308, 23712
Offset: 1
The terms together with their prime indices begin:
1: ()
6: (2,1)
84: (4,2,1,1)
126: (4,2,2,1)
140: (4,3,1,1)
210: (4,3,2,1)
490: (4,4,3,1)
525: (4,3,3,2)
686: (4,4,4,1)
875: (4,3,3,3)
1404: (6,2,2,2,1,1)
1456: (6,4,1,1,1,1)
2106: (6,2,2,2,2,1)
2184: (6,4,2,1,1,1)
2288: (6,5,1,1,1,1)
2340: (6,3,2,2,1,1)
There are two other possible double-pairings of statistics:
These partitions are counted by
A351981.
Partitions with as many even as odd parts:
- strict conjugate case counted by
A352129
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A316524 = alternating sum of prime indices.
A350944: # of odd parts = # of odd conjugate parts, counted by
A277103.
A350945: # of even parts = # of even conjugate parts, counted by
A350948.
Cf.
A026424,
A028260,
A098123,
A130780,
A171966,
A241638,
A325700,
A350841,
A350849,
A350941,
A350942,
A350950,
A350951.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[1000],Count[primeMS[#],?EvenQ]==Count[conj[primeMS[#]],?OddQ]&&Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]&]
A351981
Number of integer partitions of n with as many even parts as odd conjugate parts, and as many odd parts as even conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 2, 2, 4, 2, 1, 6, 8, 7, 9, 13, 14, 15, 19, 21, 23, 32, 40, 41, 45, 66, 81, 80, 96, 124, 139, 160, 194, 221, 246, 303, 360, 390, 446, 546, 634, 703, 810, 971, 1115, 1250, 1448, 1685, 1910
Offset: 0
The a(n) partitions for selected n:
n = 3 9 15 18 19 20 21
-----------------------------------------------------------
21 4221 622221 633222 633322 644321 643332
4311 632211 643221 643321 653321 654321
642111 643311 644221 654221 665211
651111 644211 644311 654311 82222221
653211 653221 82222211 83222211
663111 653311 84221111 84222111
654211 86111111 85221111
664111 86211111
87111111
For example, the partition (6,6,3,1,1,1) has conjugate (6,3,3,2,2,2), and has 2 even, 4 odd, 4 even conjugate, and 2 odd conjugate parts, so is counted under a(18).
These partitions are ranked by
A351980.
There are four statistics:
There are four other pairings of statistics:
-
A045931: # of even parts = # of odd parts:
-
A277103: # of odd parts = # of odd conjugate parts, ranked by
A350944.
-
A350948: # of even parts = # of even conjugate parts, ranked by
A350945.
There are two other double-pairings of statistics:
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[conj[#],?OddQ]&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A352129
Number of strict integer partitions of n with as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 3, 5, 5, 6, 6, 9, 8, 10, 12, 13, 15, 17, 20, 20, 26, 26, 32, 35, 39, 44, 50, 55, 61, 71, 76, 87, 96, 108, 117, 135, 145, 164, 181, 200, 222, 246, 272, 298, 334, 363, 404, 443
Offset: 0
The a(n) strict partitions for selected n:
n = 3 13 15 18 20 22
------------------------------------------------------------------
(2,1) (6,5,2) (10,5) (12,6) (12,7,1) (12,8,2)
(6,4,2,1) (6,4,3,2) (8,7,3) (8,5,4,3) (8,6,5,3)
(6,5,3,1) (8,5,3,2) (8,6,4,2) (8,7,5,2)
(8,6,3,1) (8,7,4,1) (12,7,2,1)
(8,6,3,2,1) (8,6,4,3,1)
(8,7,4,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A352130
Number of strict integer partitions of n with as many odd parts as even conjugate parts.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 65, 72, 79, 86, 93, 102, 111, 121, 132, 143, 155, 169, 183, 197, 213, 231, 251, 271, 292, 315, 340, 367, 396
Offset: 0
The a(n) strict partitions for selected n:
n = 2 7 9 13 14 15 16
--------------------------------------------------------------------
(2) (6,1) (8,1) (12,1) (14) (14,1) (16)
(4,2,1) (4,3,2) (6,4,3) (6,5,3) (6,5,4) (8,5,3)
(6,2,1) (8,3,2) (10,3,1) (8,4,3) (12,3,1)
(10,2,1) (6,4,3,1) (10,3,2) (6,5,4,1)
(8,3,2,1) (12,2,1) (8,4,3,1)
(6,5,3,1) (10,3,2,1)
(6,4,3,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
Cf.
A027187,
A027193,
A103919,
A122111,
A236559,
A325039,
A344607,
A344651,
A345196,
A350950,
A350951.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A352131
Number of strict integer partitions of n with same number of even parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 4, 5, 5, 5, 6, 7, 7, 8, 10, 10, 10, 12, 14, 15, 14, 17, 21, 20, 20, 25, 28, 28, 29, 34, 39, 39, 40, 47, 52, 53, 56, 64, 70, 71, 77, 86, 92, 97, 104, 114, 122
Offset: 0
The a(n) strict partitions for selected n:
n = 3 10 14 18 21 24
----------------------------------------------------------------------
(2,1) (6,4) (8,6) (10,8) (11,10) (8,7,5,4)
(4,3,2,1) (5,4,3,2) (6,5,4,3) (8,6,4,3) (9,8,4,3)
(6,5,2,1) (7,6,3,2) (8,7,4,2) (10,8,4,2)
(8,7,2,1) (10,8,2,1) (10,9,3,2)
(6,5,4,3,2,1) (11,10,2,1)
(8,6,4,3,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
Cf.
A027187,
A027193,
A103919,
A122111,
A236559,
A325039,
A344607,
A344651,
A345196,
A350942,
A350950,
A350951.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?EvenQ]==Count[conj[#],?OddQ]&]],{n,0,30}]
A352128
Number of strict integer partitions of n with (1) as many even parts as odd parts, and (2) as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 2, 3, 0, 3, 0, 2, 2, 5, 2, 5, 4, 6, 7, 7, 8, 8, 9, 9, 13, 9, 14, 12, 20, 13, 25, 17, 33, 23, 40, 26, 50, 33, 59, 39, 68, 45, 84, 58, 92, 70, 115, 88, 132, 109, 156, 139, 182, 172, 212, 211
Offset: 0
The a(n) strict partitions for selected n:
n = 3 18 22 28 31 32
-----------------------------------------------------------------------
(2,1) (8,5,3,2) (8,6,5,3) (12,7,5,4) (10,7,5,4,3,2) (12,8,7,5)
(8,6,3,1) (8,7,5,2) (12,8,5,3) (10,7,6,5,2,1) (12,9,7,4)
(12,7,2,1) (12,9,5,2) (10,8,5,4,3,1) (16,9,4,3)
(16,9,2,1) (10,9,6,3,2,1) (12,10,7,3)
(12,10,5,1) (12,11,7,2)
(16,11,4,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are two other double-pairings of statistics:
Cf.
A000070,
A014105,
A088218,
A098123,
A195017,
A236559,
A236914,
A241638,
A325700,
A350839,
A350941.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
Comments