cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A353867 Heinz numbers of integer partitions where every partial run (consecutive constant subsequence) has a different sum, and these sums include every integer from 0 to the greatest part.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 20, 30, 32, 56, 64, 90, 128, 140, 176, 210, 256, 416, 512, 616, 990, 1024, 1088, 1540, 2048, 2288, 2310, 2432, 2970, 4096, 4950, 5888, 7072, 7700, 8008, 8192, 11550, 12870, 14848, 16384, 20020, 20672, 30030, 31744, 32768, 38896, 50490, 55936
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Related concepts:
- A partition whose submultiset sums cover an initial interval is said to be complete (A126796, ranked by A325781).
- In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum.
- A complete partition that is also knapsack is said to be perfect (A002033, ranked by A325780).
- A partition whose partial runs have all different sums is said to be rucksack (A353864, ranked by A353866, complement A354583).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   16: {1,1,1,1}
   20: {1,1,3}
   30: {1,2,3}
   32: {1,1,1,1,1}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   90: {1,2,2,3}
  128: {1,1,1,1,1,1,1}
  140: {1,1,3,4}
  176: {1,1,1,1,5}
  210: {1,2,3,4}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
Complete partitions are counted by A126796, ranked by A325781.
These partitions are counted by A353865.
This is a special case of A353866, counted by A353864, complement A354583.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Select[Range[1000],norqQ[Total/@Select[msubs[primeMS[#]],SameQ@@#&]]&]

A382877 Number of ways to permute the prime indices of n so that the run-sums are all equal.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The a(144) = 4 permutations of {1,1,1,1,2,2} are:
  (1,1,1,1,2,2)
  (1,1,2,1,1,2)
  (2,1,1,2,1,1)
  (2,2,1,1,1,1)
The a(1728) = 4 permutations are:
  (1,1,1,1,1,1,2,2,2)
  (1,1,2,1,1,2,1,1,2)
  (2,1,1,2,1,1,2,1,1)
  (2,2,2,1,1,1,1,1,1)
		

Crossrefs

Compositions of this type are counted by A353851, ranked by A353848.
For run-lengths instead of sums we have A382857 (zeros A382879), distinct A382771.
For distinct instead of equal run-sums we have A382876, counted by A353850.
Positions of terms > 1 are A383015.
Positions of 1 are A383099.
Positions of 0 are A383100 (complement A383110), counted by A383098.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A304442 counts compositions with equal run-sums, complement A382076.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A353837 counts partitions with distinct run-sums, ranks A353838.
A353847 gives composition run-sum transformation, for partitions A353832.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[n]], SameQ@@Total/@Split[#]&]],{n,100}]

A353865 Number of complete rucksack partitions of n. Partitions whose weak run-sums are distinct and cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 5, 2, 3, 4, 3, 2, 4, 3, 3, 4, 4, 3, 4, 3, 4, 5, 5, 4, 6, 4, 6, 5, 4, 5, 6, 5, 6, 7, 6, 5, 9, 6, 6, 7, 6, 8, 9, 6, 6, 8, 9, 7, 9, 9, 7, 10, 9, 8, 13, 7, 10, 11, 8, 9, 10, 11, 12, 9, 11, 9, 15, 12, 12, 19, 13, 16, 16
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). A weak run-sum is the sum of any consecutive constant subsequence.
Do all positive integers appear only finitely many times in this sequence?

Examples

			The a(n) compositions for n = 1, 3, 9, 15, 18:
  (1)  (21)   (4311)       (54321)            (543321)
       (111)  (51111)      (532221)           (654111)
              (111111111)  (651111)           (7611111)
                           (81111111)         (111111111111111111)
                           (111111111111111)
For example, the weak runs of y = {7,5,4,4,3,3,3,1,1} are {}, {1}, {1,1}, {3}, {4}, {5}, {3,3}, {7}, {4,4}, {3,3,3}, with sums 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which are all distinct and cover an initial interval, so y is counted under a(31).
		

Crossrefs

Perfect partitions are counted by A002033, ranked by A325780.
Knapsack partitions are counted by A108917, ranked by A299702.
This is the complete case of A353864, ranked by A353866.
These partitions are ranked by A353867.
A000041 counts partitions, strict A000009.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353850 counts compositions with all distinct run-sums, ranked by A353852.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Table[Length[Select[IntegerPartitions[n],norqQ[Total/@Select[msubs[#],SameQ@@#&]]&]],{n,0,15}]
  • PARI
    a(n) = my(c=0, s, v); if(n, forpart(p=n, if(p[1]==1, v=List([s=1]); for(i=2, #p, if(p[i]==p[i-1], listput(v, s+=p[i]), listput(v, s=p[i]))); s=#v; listsort(v, 1); if(s==#v&&s==v[s], c++))); c, 1); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A383097 Number of integer partitions of n having more than one permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 9, 0, 7, 0, 12, 0, 1, 0, 38, 0, 1, 1, 18, 0, 38, 0, 32, 0, 1, 0, 90, 0, 1, 0, 71, 0, 78, 0, 33, 10, 1, 0, 228, 0, 31, 0, 42, 0, 156, 0, 123, 0, 1, 0, 447, 0, 1, 16, 146, 0, 222, 0, 63, 0, 102, 0, 811, 0, 1, 29, 75, 0, 334, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(27) = 1 partition is: (9,3,3,3,1,1,1,1,1,1,1,1,1).
The a(4) = 1 through a(16) = 9 partitions (empty columns not shown):
  (211)  (3111)  (422)     (511111)  (633)        (71111111)  (844)
                 (41111)             (6222)                   (82222)
                 (221111)            (33222)                  (442222)
                                     (4221111)                (44221111)
                                     (6111111)                (422221111)
                                     (33111111)               (811111111)
                                     (222111111)              (4411111111)
                                                              (42211111111)
                                                              (222211111111)
		

Crossrefs

These partitions are ranked by A383015, positions of terms > 1 in A382877.
For run-lengths instead of sums we have A383090, ranks A383089, unique A383094.
The complement is A383095 + A383096, ranks A383099 \/ A383100.
For any positive number of permutations we have A383098, ranks A383110.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]>1&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383098 Number of integer partitions of n having at least one permutation with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 2, 7, 5, 7, 2, 19, 2, 7, 8, 14, 2, 27, 2, 24, 8, 7, 2, 58, 5, 7, 13, 30, 2, 72, 2, 38, 8, 7, 8, 135, 2, 7, 8, 91, 2, 112, 2, 45, 38, 7, 2, 258, 5, 51, 8, 54, 2, 208, 8, 143, 8, 7, 2, 525, 2, 7, 44, 153, 8, 256, 2, 75, 8, 136, 2, 891, 2, 7, 57, 87, 8
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The partition (4,4,4,2,2,1,1,1,1) has permutations (4,2,2,4,1,1,1,1,4) and (4,1,1,1,1,4,2,2,4) so is counted under a(20).
The a(1) = 1 through a(10) = 7 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              211          222              422       33111      22222
              1111         2211             2222      3111111    511111
                           3111             41111     111111111  2221111
                           21111            221111               22111111
                           111111           11111111             1111111111
		

Crossrefs

For distinct instead of equal run-sums we appear to have A382427.
For run-lengths instead of sums we have A383013, ranked by complement of A382879.
The case of a unique choice is A383095, ranks A383099 = positions of 1 in A382877.
The complement is counted by A383096, ranks A383100 = positions of 0 in A382877.
These partitions are ranked by A383110.
The case of more than one choice is A383097, ranks A383015.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],SameQ@@Total/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A383097(n) + A383095(n), ranks A383015 \/ A383099.

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A353854 Length of the trajectory of the composition run-sum transformation (condensation) of the n-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 1, 1, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 corresponds to the trajectory (2,1,1) -> (2,2) -> (4), with length a(11) = 3.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The trajectory of 94685 and the a(94685) = 5 corresponding compositions:
  94685: (2,1,1,4,1,1,2,1,1,2,1)
  86357: (2,2,4,2,2,2,2,1)
  69889: (4,4,8,1)
  65793: (8,8,1)
  65537: (16,1)
		

Crossrefs

Positions of first appearances are A072639.
Positions of 1's are A333489, counted by A003242 (complement A261983).
The version for partitions is A353841.
The last part of the same trajectory is A353855.
This is the rank statistic counted by A353859.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A333627 represents the run-lengths of standard compositions.
A353832 represents the run-sum transformation of a partition.
A353840-A353846 pertain to the partition run-sum trajectory.
A353847 represents the run-sum transformation of a composition.
A353853-A353859 pertain to the composition run-sum trajectory.
A353932 lists run-sums of standard compositions, represented by A353847.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[FixedPointList[Total/@Split[#]&,stc[n]]]-1,{n,0,100}]

A353855 Last term of the trajectory of the composition run-sum transformation (condensation) of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 6, 4, 8, 9, 8, 8, 12, 13, 8, 8, 16, 17, 18, 18, 20, 17, 22, 20, 24, 25, 24, 24, 20, 17, 18, 16, 32, 33, 34, 34, 32, 37, 38, 32, 40, 41, 32, 34, 44, 45, 32, 40, 48, 49, 50, 50, 52, 49, 54, 52, 40, 41, 40, 32, 32, 37, 34, 32, 64, 65, 66, 66, 68
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8, corresponding to (2,1,1) -> (2,2) -> (4), has last term a(11) = 8.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The trajectory 139 -> 138 -> 136 -> 128 ends with a(139) = 128.
		

Crossrefs

The version for partitions is A353842.
This trajectory has length A353854, firsts A072639, partitions A353841.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A325268 counts partitions by omicron, rank statistic A304465.
A333627 ranks the run-lengths of standard compositions.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353840-A353846 pertain to a partition's run-sum trajectory.
A353847 represents a composition's run-sums, partitions A353832.
A353853-A353859 pertain to a composition's run-sum trajectory.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[2^Accumulate[Reverse[FixedPoint[Total/@Split[#]&,stc[n]]]]/2],{n,0,100}]

A353858 Number of integer compositions of n with run-sum trajectory ending in a singleton.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 8, 2, 20, 5, 8, 2, 78, 2, 8, 8, 223, 2, 179, 2, 142, 8, 8, 2, 4808
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sums (cf. A353847) until an anti-run composition (A003242) is reached. For example, the composition (2,2,1,1,2) is counted under a(8) because it has the following run-sum trajectory: (2,2,1,1,2) -> (4,2,2) -> (4,4) -> (8).

Examples

			The a(0) = 0 through a(8) = 20 compositions:
  .  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
          (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                       (112)            (222)                (224)
                       (211)            (1113)               (422)
                       (1111)           (2112)               (1124)
                                        (3111)               (2114)
                                        (11211)              (2222)
                                        (111111)             (4112)
                                                             (4211)
                                                             (11114)
                                                             (21122)
                                                             (22112)
                                                             (41111)
                                                             (111122)
                                                             (112112)
                                                             (211211)
                                                             (221111)
                                                             (1111211)
                                                             (1121111)
                                                             (11111111)
		

Crossrefs

The version for partitions is A353845, ranked by A353844.
The trajectory itself is A353853, last part A353855.
The lengths of trajectories of standard compositions are A353854.
This is column k = 1 of A353856, for partitions A353843.
These compositions are ranked by A353857.
A011782 counts compositions.
A066099 lists compositions in standard order.
A238279 and A333755 count compositions by number of runs.
A275870 counts collapsible partitions, ranked by A300273.
A333489 ranks anti-runs, counted by A003242 (complement A261983).
A353840-A353846 pertain to partition run-sum trajectory.
A353847 represents the run-sums of a composition, partitions A353832.
A353851 counts compositions with equal run-sums, ranked by A353848.
A353859 counts compositions by length of run-sum trajectory.
A353860 counts collapsible compositions.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n], Length[FixedPoint[Total/@Split[#]&,#]]==1&]],{n,0,15}]

A353930 Smallest number whose binary expansion has n distinct run-sums.

Original entry on oeis.org

1, 2, 11, 183, 5871, 375775, 48099263, 12313411455, 6304466665215, 6455773865180671, 13221424875890015231, 54154956291645502388223, 443637401941159955564326911, 7268555193403964711965932118015, 238176016577461115681699663643131903, 15609103422420491677315869156516292427775
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms, binary expansions, and standard compositions begin:
       1:                    1  (1)
       2:                   10  (2)
      11:                 1011  (2,1,1)
     183:             10110111  (2,1,2,1,1,1)
    5871:        1011011101111  (2,1,2,1,1,2,1,1,1,1)
  375775:  1011011101111011111  (2,1,2,1,1,2,1,1,1,2,1,1,1,1,1)
		

Crossrefs

Essentially the same as A215203.
For prime indices instead of binary expansion we have A006939.
For lengths instead of sums of runs we have A165933 = firsts in A165413.
Numbers whose binary expansion has all distinct runs are A175413.
For standard compositions we have A246534, firsts of A353849.
For runs instead of run-sums we have A350952, firsts of A297770.
These are the positions of first appearances in A353929.
A005811 counts runs in binary expansion.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A351014 counts distinct runs in standard compositions.
A353835 counts partitions with all distinct run-sums, weak A353861.
A353864 counts rucksack partitions.

Programs

  • Mathematica
    qe=Table[Length[Union[Total/@Split[IntegerDigits[n,2]]]],{n,1,10000}];
    Table[Position[qe,i][[1,1]],{i,Max@@qe}]
  • PARI
    a(n) = {my(t=1); if(n==2, t<<=1, for(k=3, n, t = (t<Andrew Howroyd, Jan 01 2023

Extensions

Offset corrected and terms a(7) and beyond from Andrew Howroyd, Jan 01 2023

A354580 Number of rucksack compositions of n: every distinct partial run has a different sum.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 22, 39, 68, 125, 227, 402, 710, 1280, 2281, 4040, 7196, 12780, 22623, 40136, 71121, 125863, 222616, 393305, 695059, 1227990, 2167059, 3823029, 6743268, 11889431, 20955548, 36920415, 65030404, 114519168, 201612634, 354849227
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2022

Keywords

Comments

We define a partial run of a sequence to be any contiguous constant subsequence. The term rucksack is short for run-knapsack.

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)    (3)      (4)        (5)
           (1,1)  (1,2)    (1,3)      (1,4)
                  (2,1)    (2,2)      (2,3)
                  (1,1,1)  (3,1)      (3,2)
                           (1,2,1)    (4,1)
                           (1,1,1,1)  (1,1,3)
                                      (1,2,2)
                                      (1,3,1)
                                      (2,1,2)
                                      (2,2,1)
                                      (3,1,1)
                                      (1,1,1,1,1)
		

Crossrefs

The knapsack version is A325676, ranked by A333223.
The non-partial version for partitions is A353837, ranked by A353838 (complement A353839).
The non-partial version is A353850, ranked by A353852.
The version for partitions is A353864, ranked by A353866.
The complete version for partitions is A353865, ranked by A353867.
These compositions are ranked by A354581.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A108917 counts knapsack partitions, ranked by A299702, strict A275972.
A238279 and A333755 count compositions by number of runs.
A275870 counts collapsible partitions, ranked by A300273.
A353836 counts partitions by number of distinct run-sums.
A353847 is the composition run-sum transformation.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions, ranked by A354908.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],UnsameQ@@Total/@Union@@Subsets/@Split[#]&]],{n,0,15}]

Extensions

Terms a(16) onward from Max Alekseyev, Sep 10 2023
Previous Showing 21-30 of 45 results. Next