cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A353841 Length of the trajectory of the partition run-sum transformation of n, using Heinz numbers; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, May 25 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Starting with n, this is one plus the number of times one must apply A353832 to reach a squarefree number.
Also Kimberling's depth statistic (defined in A237685 and A237750) plus one.

Examples

			The trajectory for a(1080) = 4 is the following, with prime indices shown on the right:
  1080: {1,1,1,2,2,2,3}
   325: {3,3,6}
   169: {6,6}
    37: {12}
The trajectory for a(87780) = 5 is the following, with prime indices shown on the right:
  87780: {1,1,2,3,4,5,8}
  65835: {2,2,3,4,5,8}
  51205: {3,4,4,5,8}
  19855: {3,5,8,8}
   2915: {3,5,16}
The trajectory for a(39960) = 5 is the following, with prime indices shown on the right:
  39960: {1,1,1,2,2,2,3,12}
  12025: {3,3,6,12}
   6253: {6,6,12}
   1369: {12,12}
     89: {24}
		

Crossrefs

Positions of 1's are A005117.
The version for run-lengths instead of sums is A182850 or A323014.
Positions of first appearances are A353743.
These are the row-lengths of A353840.
Other sequences pertaining to this trajectory are A353842-A353845.
Counting partitions by this statistic gives A353846.
The version for compositions is A353854, run-lengths of A353853.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A318928 gives runs-resistance of binary expansion.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[If[n==1,0,Length[NestWhileList[Times@@Prime/@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]&,n,!SquareFreeQ[#]&]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum)));
    A353841(n) = if(1==n,0,for(i=1,oo,if(issquarefree(n), return(i), n = A353832(n)))); \\ Antti Karttunen, Jan 20 2025

Formula

a(1) = 0, and for n > 1, if A008966(n) = 1 [n is in A005117], a(n) = 1, otherwise a(n) = 1+a(A353832(n)). [See comments] - Antti Karttunen, Jan 20 2025

Extensions

More terms from Antti Karttunen, Jan 20 2025

A381995 Number of ways to partition the prime indices of n into constant blocks with a common sum.

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 2, 2, 0, 1, 1, 1, 0, 0, 3, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2025

Keywords

Comments

Also the number of factorizations of n into prime powers > 1 with equal sums of prime indices.

Examples

			The prime indices of 144 are {1,1,1,1,2,2}, with the following 2 multiset partitions into constant blocks with a common sum:
  {{2,2},{1,1,1,1}}
  {{2},{2},{1,1},{1,1}}
so a(144) = 2.
		

Crossrefs

For just constant blocks we have A000688.
Twice-partitions of this type are counted by A279789.
For just a common sum we have A321455.
For distinct instead of equal sums we have A381635.
Positions of 0 are A381871, counted by A381993.
MM-numbers of these multiset partitions are A382215.
A001055 counts factorizations, strict A045778.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.
A353864 counts rucksack partitions, ranked by A353866.
Cf. A279784, A295935, A381453 (lower), A381455 (upper).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@SameQ@@@#&]],{n,100}]

Formula

A323774(n) = Sum_{A056239(k)=n} a(k). Gus Wiseman, Apr 25 2025

A353743 Least number with run-sum trajectory of length k; a(0) = 1.

Original entry on oeis.org

1, 2, 4, 12, 84, 1596, 84588, 11081028, 3446199708, 2477817590052, 4011586678294188, 14726534696017964148, 120183249654202605411828, 2146833388573021140471483564, 83453854313999050793547980583372, 7011542477899258250521520684673165324
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832, A353847) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
     12: {1,1,2}
     84: {1,1,2,4}
   1596: {1,1,2,4,8}
  84588: {1,1,2,4,8,16}
		

Crossrefs

The ordered version is A072639, for run-lengths A333629.
The version for run-lengths is A325278, firsts in A182850 or A323014.
The run-sum trajectory is the iteration of A353832.
The first length-k row of A353840 has index a(k).
Other sequences pertaining to this trajectory are A353841-A353846.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Join[{1,2},Table[2*Product[Prime[2^k],{k,0,n}],{n,0,6}]]

Formula

a(n > 1) = 2 * Product_{k=0..n-2} prime(2^k).
a(n > 0) = 2 * A325782(n).

A353930 Smallest number whose binary expansion has n distinct run-sums.

Original entry on oeis.org

1, 2, 11, 183, 5871, 375775, 48099263, 12313411455, 6304466665215, 6455773865180671, 13221424875890015231, 54154956291645502388223, 443637401941159955564326911, 7268555193403964711965932118015, 238176016577461115681699663643131903, 15609103422420491677315869156516292427775
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms, binary expansions, and standard compositions begin:
       1:                    1  (1)
       2:                   10  (2)
      11:                 1011  (2,1,1)
     183:             10110111  (2,1,2,1,1,1)
    5871:        1011011101111  (2,1,2,1,1,2,1,1,1,1)
  375775:  1011011101111011111  (2,1,2,1,1,2,1,1,1,2,1,1,1,1,1)
		

Crossrefs

Essentially the same as A215203.
For prime indices instead of binary expansion we have A006939.
For lengths instead of sums of runs we have A165933 = firsts in A165413.
Numbers whose binary expansion has all distinct runs are A175413.
For standard compositions we have A246534, firsts of A353849.
For runs instead of run-sums we have A350952, firsts of A297770.
These are the positions of first appearances in A353929.
A005811 counts runs in binary expansion.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A351014 counts distinct runs in standard compositions.
A353835 counts partitions with all distinct run-sums, weak A353861.
A353864 counts rucksack partitions.

Programs

  • Mathematica
    qe=Table[Length[Union[Total/@Split[IntegerDigits[n,2]]]],{n,1,10000}];
    Table[Position[qe,i][[1,1]],{i,Max@@qe}]
  • PARI
    a(n) = {my(t=1); if(n==2, t<<=1, for(k=3, n, t = (t<Andrew Howroyd, Jan 01 2023

Extensions

Offset corrected and terms a(7) and beyond from Andrew Howroyd, Jan 01 2023

A354580 Number of rucksack compositions of n: every distinct partial run has a different sum.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 22, 39, 68, 125, 227, 402, 710, 1280, 2281, 4040, 7196, 12780, 22623, 40136, 71121, 125863, 222616, 393305, 695059, 1227990, 2167059, 3823029, 6743268, 11889431, 20955548, 36920415, 65030404, 114519168, 201612634, 354849227
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2022

Keywords

Comments

We define a partial run of a sequence to be any contiguous constant subsequence. The term rucksack is short for run-knapsack.

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)    (3)      (4)        (5)
           (1,1)  (1,2)    (1,3)      (1,4)
                  (2,1)    (2,2)      (2,3)
                  (1,1,1)  (3,1)      (3,2)
                           (1,2,1)    (4,1)
                           (1,1,1,1)  (1,1,3)
                                      (1,2,2)
                                      (1,3,1)
                                      (2,1,2)
                                      (2,2,1)
                                      (3,1,1)
                                      (1,1,1,1,1)
		

Crossrefs

The knapsack version is A325676, ranked by A333223.
The non-partial version for partitions is A353837, ranked by A353838 (complement A353839).
The non-partial version is A353850, ranked by A353852.
The version for partitions is A353864, ranked by A353866.
The complete version for partitions is A353865, ranked by A353867.
These compositions are ranked by A354581.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A108917 counts knapsack partitions, ranked by A299702, strict A275972.
A238279 and A333755 count compositions by number of runs.
A275870 counts collapsible partitions, ranked by A300273.
A353836 counts partitions by number of distinct run-sums.
A353847 is the composition run-sum transformation.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions, ranked by A354908.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],UnsameQ@@Total/@Union@@Subsets/@Split[#]&]],{n,0,15}]

Extensions

Terms a(16) onward from Max Alekseyev, Sep 10 2023

A363126 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-modes, all 0's removed.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 8, 1, 10, 9, 3, 11, 13, 6, 15, 18, 9, 13, 24, 18, 1, 25, 24, 25, 3, 19, 36, 40, 6, 29, 41, 52, 13, 33, 45, 79, 19, 42, 57, 95, 36, 1, 39, 68, 133, 54, 3, 62, 72, 158, 87, 6, 55, 87, 214, 121, 13, 81, 95, 250, 177, 24
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			Triangle begins:
   1
   1
   2
   3
   4   1
   4   3
   8   3
   6   8   1
  10   9   3
  11  13   6
  15  18   9
  13  24  18   1
  25  24  25   3
  19  36  40   6
  29  41  52  13
  33  45  79  19
  42  57  95  36   1
  39  68 133  54   3
Row n = 9 counts the following partitions:
  (9)          (441)       (3321)
  (54)         (522)       (4221)
  (63)         (711)       (4311)
  (72)         (3222)      (5211)
  (81)         (6111)      (42111)
  (333)        (22221)     (321111)
  (432)        (32211)
  (531)        (33111)
  (621)        (51111)
  (222111)     (411111)
  (111111111)  (2211111)
               (3111111)
               (21111111)
		

Crossrefs

Row sums are A000041.
Row lengths are approximately A000196.
Column k = 0 is A047966.
For modes we have A362614, rank statistic A362611.
For co-modes we have A362615, rank statistic A362613.
Columns k > 1 sum to A363124.
Column k = 1 is A363125.
This rank statistic (number of non-modes) is A363127.
For non-co-modes we have A363130, rank statistic A363131.
A008284/A058398 count partitions by length/mean.
A275870 counts collapsible partitions.
A353836 counts partitions by number of distinct run-sums.
A359893 counts partitions by median.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]
    				

A353842 Last part of the trajectory of the partition run-sum transformation of n, using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 7, 13, 14, 15, 7, 17, 14, 19, 15, 21, 22, 23, 15, 13, 26, 13, 21, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 13, 41, 42, 43, 33, 35, 46, 47, 21, 19, 26, 51, 39, 53, 26, 55, 35, 57, 58, 59, 35, 61, 62, 19, 13, 65, 66, 67, 51
Offset: 1

Views

Author

Gus Wiseman, May 25 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The partition run-sum trajectory of 87780 is: 87780 -> 65835 -> 51205 -> 19855 -> 2915, so a(87780) = 2915.
		

Crossrefs

The fixed points and image are A005117.
For run-lengths instead of sums we have A304464/A304465, counted by A325268.
These are the row-ends of A353840.
Other sequences pertaining to partition trajectory are A353841-A353846.
The version for compositions is A353855, run-ends of A353853.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A182850 and A323014 give frequency depth.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[NestWhile[Times@@Prime/@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]&,n,!SquareFreeQ[#]&],{n,100}]

A354907 Number of distinct sums of contiguous constant subsequences (partial runs) of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 5, 1, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 4, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			Composition number 981 in standard order is (1,1,1,2,2,2,1), with partial runs (1), (2), (1,1), (2,2), (1,1,1), (2,2,2), with distinct sums {1,2,3,4,6}, so a(981) = 5.
		

Crossrefs

Positions of 1's are A000051.
Positions of first appearances are A000079.
The standard compositions used here are A066099, run-sums A353847/A353932.
If we allow any subsequence we get A334968.
The case of full runs is A353849, firsts A246534.
A version for nonempty partitions is A353861, full A353835.
Counting all distinct runs (instead of their distinct sums) gives A354582.
A124767 counts runs in standard compositions.
A238279 and A333755 count compositions by number of runs.
A330036 counts distinct partial runs of prime indices, full A005811.
A351014 counts distinct runs of standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A354584 lists run-sums of prime indices, rows ranked by A353832.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pre[y_]:=NestWhileList[Most,y,Length[#]>1&];
    Table[Length[Union[Total/@Join@@pre/@Split[stc[n]]]],{n,0,100}]

A353844 Starting with the multiset of prime indices of n, repeatedly take the multiset of run-sums until you reach a squarefree number. This number is prime (or 1) iff n belongs to the sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

The run-sums transformation is described by Kimberling at A237685 and A237750.
The runs of a sequence are its maximal consecutive constant subsequences. For example, the runs of {1,1,1,2,2,3,4} are {1,1,1}, {2,2}, {3}, {4}, with sums {3,3,4,4}.
Note that the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so this sequence lists Heinz numbers of partitions whose run-sum trajectory reaches an empty set or singleton.

Examples

			The terms together with their prime indices begin:
      1: {}            25: {3,3}           64: {1,1,1,1,1,1}
      2: {1}           27: {2,2,2}         67: {19}
      3: {2}           29: {10}            71: {20}
      4: {1,1}         31: {11}            73: {21}
      5: {3}           32: {1,1,1,1,1}     79: {22}
      7: {4}           37: {12}            81: {2,2,2,2}
      8: {1,1,1}       40: {1,1,1,3}       83: {23}
      9: {2,2}         41: {13}            84: {1,1,2,4}
     11: {5}           43: {14}            89: {24}
     12: {1,1,2}       47: {15}            97: {25}
     13: {6}           49: {4,4}          101: {26}
     16: {1,1,1,1}     53: {16}           103: {27}
     17: {7}           59: {17}           107: {28}
     19: {8}           61: {18}           109: {29}
     23: {9}           63: {2,2,4}        112: {1,1,1,1,4}
The trajectory 60 -> 45 -> 35 ends in a nonprime number 35, so 60 is not in the sequence.
The trajectory 84 -> 63 -> 49 -> 19 ends in a prime number 19, so 84 is in the sequence.
		

Crossrefs

This sequence is a subset of A300273, counted by A275870.
The version for compositions is A353857, counted by A353847.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A304442 counts partitions with all equal run-sums.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A325268 counts partitions by omicron, rank statistic A304465.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353853-A353859 pertain to composition run-sum trajectory.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    ope[n_]:=Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k];
    Select[Range[100],#==1||PrimeQ[NestWhile[ope,#,!SquareFreeQ[#]&]]&]

A353845 Number of integer partitions of n such that if you repeatedly take the multiset of run-sums (or condensation), you eventually reach an empty set or singleton.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 5, 2, 8, 3, 5, 2, 15, 2, 5, 4, 18, 2, 13, 2, 14, 4, 5, 2, 62, 3, 5, 5, 14, 2, 18, 2, 48, 4, 5, 4, 71, 2, 5, 4, 54, 2, 18, 2, 14, 10, 5, 2, 374, 3, 9, 4, 14, 2, 37, 4, 54, 4, 5, 2, 131
Offset: 0

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (211)            (222)                (422)
                    (1111)           (3111)               (2222)
                                     (111111)             (4211)
                                                          (41111)
                                                          (221111)
                                                          (11111111)
For example, the partition (3,2,2,2,1,1,1) has trajectory: (1,1,1,2,2,2,3) -> (3,3,6) -> (6,6) -> (12), so is counted under a(12).
		

Crossrefs

Dominated by A018818 (partitions into divisors).
The version for compositions is A353858.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A325268 counts partitions by omicron, rank statistic A304465.
A353832 represents the operation of taking run-sums of a partition.
A353837 counts partitions with all distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353847-A353859 pertain to composition run-sum trajectory.
A353864 counts rucksack partitions, ranked by A353866.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[NestWhile[Sort[Total/@Split[#]]&,#,!UnsameQ@@#&]]<=1&]],{n,0,30}]
Previous Showing 31-40 of 54 results. Next