A368414 Number of factorizations of n into positive integers > 1 such that it is possible to choose a different prime factor of each factor.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
Offset: 1
Keywords
Examples
The a(n) factorizations for selected n: 1 6 12 24 30 60 72 120 2*3 2*6 2*12 2*15 2*30 2*36 2*60 3*4 3*8 3*10 3*20 3*24 3*40 4*6 5*6 4*15 4*18 4*30 2*3*5 5*12 6*12 5*24 6*10 8*9 6*20 2*3*10 8*15 2*5*6 10*12 3*4*5 2*3*20 2*5*12 2*6*10 3*4*10 3*5*8 4*5*6
Crossrefs
The complement is counted by A368413.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], Select[Tuples[First/@FactorInteger[#]&/@#], UnsameQ@@#&]!={}&]],{n,100}]
Comments