cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 91 results. Next

A370636 Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {1,3,4}
                         {2,3,4}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations are counted by A368414/A370814, complement A368413/A370813.
For prime indices we have A370582, differences A370586.
The complement for prime indices is A370583, differences A370587.
The complement is A370637, differences A370589, without ones A370643.
The case of a unique choice is A370638, maxima A370640, differences A370641.
First differences are A370639.
The minimal case of the complement is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367902(n).
Partial sums of A370639.

Extensions

a(19)-a(40) from Alois P. Heinz, Mar 09 2024

A367771 Number of ways to choose a different prime index of each prime index of 2n + 1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 0, 2, 0, 0, 2, 1, 1, 2, 3, 1, 1, 2, 0, 2, 0, 1, 4, 1, 0, 1, 3, 0, 1, 1, 2, 3, 2, 0, 2, 2, 0, 1, 1, 1, 4, 2, 1, 3, 2, 0, 2, 3, 0, 3, 1, 1, 3, 0, 0, 2, 0, 1, 0, 1, 1, 5, 0, 0, 2, 2, 2, 2, 2, 0, 2, 4, 0, 1, 1, 0, 4, 2, 1, 2, 2, 0, 4
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of prime indices of 427 = 2*213 + 1 are {{1,1},{1,2,2}}, with four ways to choose (1,2), so a(213) = 4.
The prime indices of prime indices of 1469 = 2*734 + 1 are {{1,2},{1,2,3}}, with four choices (1,2), (1,3), (2,1), (2,3), so a(734) = 4.
		

Crossrefs

The "extended" version below includes alternating zeros at even positions.
Extended positions of zeros are A355529, binary A367907.
The extended version for binary indices is A367905.
Extended positions of nonzeros are A368100, binary A367906.
Extended positions of ones are A368101, binary A367908.
The extended version without distinctness is A355741, for multisets A355744.
A058891 counts set-systems, covering A003465, connected A323818.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[prix/@prix[2n+1]], UnsameQ@@#&]],{n,0,100}]

A370585 Number of maximal subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 5, 7, 11, 25, 25, 38, 38, 84, 150, 178, 178, 235, 235, 341, 579, 1235, 1235, 1523, 1968, 4160, 4824, 6840, 6840, 9140, 9140, 10028, 16264, 33956, 48680, 56000, 56000, 116472, 186724, 223884, 223884, 290312, 290312, 403484, 484028, 1001420
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Comments

First differs from A307984 at a(21) = 579, A307984(21) = 578. The difference is due to the set {10,11,13,14,15,17,19,21}, which is not a basis because log(10) + log(21) = log(14) + log(15).
Also length-pi(n) subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Examples

			The a(0) = 1 through a(8) = 7 subsets:
  {}  {}  {2}  {2,3}  {2,3}  {2,3,5}  {2,3,5}  {2,3,5,7}  {2,3,5,7}
                      {3,4}  {3,4,5}  {2,5,6}  {2,5,6,7}  {2,5,6,7}
                                      {3,4,5}  {3,4,5,7}  {3,4,5,7}
                                      {3,5,6}  {3,5,6,7}  {3,5,6,7}
                                      {4,5,6}  {4,5,6,7}  {3,5,7,8}
                                                          {4,5,6,7}
                                                          {5,6,7,8}
		

Crossrefs

Multisets of this type are ranked by A368100, complement A355529.
Factorizations of this type are counted by A368414, complement A368413.
The version for set-systems is A368601, max of A367902 (complement A367903).
This is the maximal case of A370582, complement A370583, cf. A370584.
A different kind of maximality is A370586, complement A370587.
The case containing n is A370590, complement A370591.
Partitions of this type (choosable) are A370592, complement A370593.
For binary indices instead of factors we have A370640, cf. A370636, A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n], {PrimePi[n]}],Length[Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A370582 Number of subsets of {1..n} such that it is possible to choose a different prime factor of each element.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 20, 40, 52, 72, 116, 232, 320, 640, 1020, 1528, 1792, 3584, 4552, 9104, 12240, 17840, 27896, 55792, 67584, 83968, 130656, 150240, 198528, 397056, 507984, 1015968, 1115616, 1579168, 2438544, 3259680, 3730368, 7460736, 11494656, 16145952, 19078464, 38156928
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2024

Keywords

Examples

			The a(0) = 1 through a(6) = 20 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {6}
                             {2,5}    {2,3}
                             {3,4}    {2,5}
                             {3,5}    {2,6}
                             {4,5}    {3,4}
                             {2,3,5}  {3,5}
                             {3,4,5}  {3,6}
                                      {4,5}
                                      {4,6}
                                      {5,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
		

Crossrefs

The version for set-systems is A367902, ranks A367906, unlabeled A368095.
The complement for set-systems is A367903, ranks A367907, unlabeled A368094.
For unlabeled multiset partitions we have A368098, complement A368097.
Multisets of this type are ranked by A368100, complement A355529.
For divisors instead of factors we have A368110, complement A355740.
The version for factorizations is A368414, complement A368413.
The complement is counted by A370583.
For a unique choice we have A370584.
The maximal case is A370585.
Partial sums of A370586, complement A370587.
The version for partitions is A370592, complement A370593.
For binary indices instead of factors we have A370636, complement A370637.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]

Formula

a(p) = 2 * a(p-1) for prime p. - David A. Corneth, Feb 25 2024
a(n) = 2^n - A370583(n).

Extensions

a(19) from David A. Corneth, Feb 25 2024
a(20)-a(41) from Alois P. Heinz, Feb 25 2024

A370802 Positive integers with as many prime factors (A001222) as distinct divisors of prime indices (A370820).

Original entry on oeis.org

1, 2, 6, 9, 10, 22, 25, 28, 30, 34, 42, 45, 62, 63, 66, 75, 82, 92, 98, 99, 102, 104, 110, 118, 121, 134, 140, 147, 152, 153, 156, 166, 170, 186, 210, 218, 228, 230, 232, 234, 246, 254, 260, 275, 276, 279, 289, 308, 310, 314, 315, 330, 342, 343, 344, 348, 350
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All squarefree terms are even.

Examples

			The prime indices of 1617 are {2,4,4,5}, with distinct divisors {1,2,4,5}, so 1617 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   22: {1,5}
   25: {3,3}
   28: {1,1,4}
   30: {1,2,3}
   34: {1,7}
   42: {1,2,4}
   45: {2,2,3}
   62: {1,11}
   63: {2,2,4}
   66: {1,2,5}
   75: {2,3,3}
   82: {1,13}
   92: {1,1,9}
   98: {1,4,4}
   99: {2,2,5}
  102: {1,2,7}
  104: {1,1,1,6}
		

Crossrefs

For factors instead of divisors on the RHS we have A319899.
A version for binary indices is A367917.
For (greater than) instead of (equal) we have A370348, counted by A371171.
The RHS is A370820, for prime factors instead of divisors A303975.
Partitions of this type are counted by A371130, strict A371128.
For divisors instead of factors on LHS we have A371165, counted by A371172.
For only distinct prime factors on LHS we have A371177, counted by A371178.
Other inequalities: A371166, A371167, A371169, A371170.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts divisor-choosable partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A370320 counts non-divisor-choosable partitions, ranks A355740.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

Formula

A001222(a(n)) = A370820(a(n)).

A370584 Number of subsets of {1..n} such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 18, 36, 48, 68, 104, 208, 284, 568, 888, 1296, 1548, 3096, 3968, 7936, 10736, 15440, 24008, 48016, 58848, 73680, 114368, 132608, 176240, 352480, 449824, 899648, 994976, 1399968, 2160720, 2859584, 3296048, 6592096, 10156672, 14214576, 16892352
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3).

Examples

			The a(0) = 1 through a(6) = 18 subsets:
  {}  {}  {}   {}     {}     {}       {}
          {2}  {2}    {2}    {2}      {2}
               {3}    {3}    {3}      {3}
               {2,3}  {4}    {4}      {4}
                      {2,3}  {5}      {5}
                      {3,4}  {2,3}    {2,3}
                             {2,5}    {2,5}
                             {3,4}    {2,6}
                             {3,5}    {3,4}
                             {4,5}    {3,5}
                             {2,3,5}  {3,6}
                             {3,4,5}  {4,5}
                                      {4,6}
                                      {2,3,5}
                                      {2,5,6}
                                      {3,4,5}
                                      {3,5,6}
                                      {4,5,6}
		

Crossrefs

For divisors instead of factors we have A051026, cf. A368110, A355740.
The version for set-systems is A367904, ranks A367908.
Multisets of this type are ranked by A368101, cf. A368100, A355529.
For existence we have A370582, differences A370586.
For nonexistence we have A370583, differences A370587.
Maximal sets of this type are counted by A370585.
The version for partitions is A370594, cf. A370592, A370593.
For binary indices instead of factors we have A370638, cf. A370636, A370637.
The version for factorizations is A370645, cf. A368414, A368413.
For unlabeled multiset partitions we have A370646, cf. A368098, A368097.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], Length[Union[Sort/@Select[Tuples[If[#==1, {},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370637 Number of subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 25, 67, 134, 309, 709, 1579, 3420, 7240, 15077, 30997, 61994, 125364, 253712, 512411, 1032453, 2075737, 4166469, 8352851, 16731873, 33497422, 67038086, 134130344, 268328977, 536741608, 1073586022, 2147296425, 4294592850, 8589346462, 17179033384
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(5) = 8 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}
                    {1,2,3,4}  {1,4,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
                               {1,2,3,4,5}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370582, differences A370586.
For prime indices we have A370583, differences A370587.
First differences are A370589.
The complement is counted by A370636, differences A370639.
The case without ones is A370643.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The minimal case is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367903(n).
Partial sums of A370589.

Extensions

a(21)-a(34) from Alois P. Heinz, Mar 09 2024

A370348 Numbers k such that there are fewer divisors of prime indices of k than there are prime indices of k.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 32, 36, 40, 44, 48, 50, 54, 56, 60, 64, 68, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 124, 125, 126, 128, 132, 135, 136, 144, 150, 160, 162, 164, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 216, 220, 224, 225, 236, 240, 242, 243, 248, 250, 252, 256
Offset: 1

Views

Author

Robert Israel, Feb 15 2024

Keywords

Comments

No multiple of a term is a term of A368110.

Examples

			a(5) = 18 is a term because the prime indices of 18 = 2 * 3^2 are 1,2,2, and there are 3 of these but only 2 divisors of prime indices, namely 1 and 2.
		

Crossrefs

The LHS is A370820, firsts A371131.
The version for equality is A370802, counted by A371130, strict A371128.
For submultisets instead of parts on the RHS we get A371167.
The opposite version is A371168, counted by A371173.
The weak version is A371169.
The complement is A371170.
Partitions of this type are counted by A371171.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Maple
    filter:= proc(n) uses numtheory; local F,D,t;
       F:= map(t -> [pi(t[1]),t[2]], ifactors(n)[2]);
       D:= `union`(seq(divisors(t[1]), t = F));
       nops(D) < add(t[2], t = F)
    end proc:
    select(filter, [$1..300]);
  • Mathematica
    filter[n_] := Module[{F, d},
        F = {PrimePi[#[[1]]], #[[2]]}& /@ FactorInteger[n];
        d = Union[Flatten[Divisors /@ F[[All, 1]]]];
        Length[d] < Total[F[[All, 2]]]];
    Select[Range[300], filter] (* Jean-François Alcover, Mar 08 2024, after Maple code *)

A370803 Number of integer partitions of n such that more than one set can be obtained by choosing a different divisor of each part.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 2, 4, 5, 7, 10, 11, 15, 18, 25, 28, 39, 45, 59, 66, 83, 101, 123, 150, 176, 213, 252, 301, 352, 426, 497, 589, 684, 802, 939, 1095, 1270, 1480, 1718, 1985, 2289, 2645, 3056, 3489, 4019, 4590, 5289, 6014, 6877, 7817, 8955, 10134, 11551, 13085
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2024

Keywords

Examples

			The partition (6,4,4,1) has two choices, namely {1,2,4,6} and {1,2,3,4}, so is counted under a(15).
The a(0) = 0 through a(13) = 18 partitions (A..D = 10..13):
  .  .  2   3   4   5    6    7    8     9     A     B     C     D
                    32   42   43   44    54    64    65    66    76
                    41        52   53    63    73    74    75    85
                              61   62    72    82    83    84    94
                                   431   81    91    92    93    A3
                                         432   433   A1    A2    B2
                                         621   532   443   543   C1
                                               541   542   633   544
                                               622   632   642   643
                                               631   641   651   652
                                                     821   732   661
                                                           741   742
                                                           822   832
                                                           831   841
                                                           921   922
                                                                 A21
                                                                 5431
                                                                 6421
		

Crossrefs

Including partitions with one choice gives A239312, complement A370320.
For a unique choice we have A370595, ranks A370810.
These partitions have ranks A370811.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355733 counts divisor-choices of prime indices.
A355741, A355744, A355745 choose prime factors of prime indices.
A370592 counts factor-choosable partitions, ranks A368100.
A370593 counts non-factor-choosable partitions, ranks A355529.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Sort /@ Select[Tuples[Divisors/@#],UnsameQ@@#&]]]>1&]],{n,0,30}]

Formula

a(n) = A239312(n) - A370595(n). - Jinyuan Wang, Feb 14 2025

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A371130 Number of integer partitions of n such that the number of parts is equal to the number of distinct divisors of parts.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 4, 2, 4, 5, 5, 11, 10, 16, 17, 21, 26, 32, 44, 53, 69, 71, 101, 110, 148, 168, 205, 249, 289, 356, 418, 502, 589, 716, 812, 999, 1137, 1365, 1566, 1873, 2158, 2537, 2942, 3449, 4001, 4613, 5380, 6193, 7220, 8224, 9575, 10926, 12683, 14430
Offset: 0

Views

Author

Gus Wiseman, Mar 17 2024

Keywords

Comments

The Heinz numbers of these partitions are given by A370802.

Examples

			The partition (6,2,2,1) has 4 parts and 4 distinct divisors of parts {1,2,3,6} so is counted under a(11).
The a(1) = 1 through a(11) = 11 partitions:
  (1)  .  (21)  (22)  .  (33)   (322)  (71)   (441)   (55)    (533)
                (31)     (51)   (421)  (332)  (522)   (442)   (722)
                         (321)         (422)  (531)   (721)   (731)
                         (411)         (521)  (4311)  (4321)  (911)
                                              (6111)  (6211)  (4322)
                                                              (4331)
                                                              (5321)
                                                              (5411)
                                                              (6221)
                                                              (6311)
                                                              (8111)
		

Crossrefs

The LHS is represented by A001222, distinct A000021.
These partitions are ranked by A370802.
The RHS is represented by A370820, for prime factors A303975.
The strict case is A371128.
For (greater than) instead of (equal to) we have A371171, ranks A370348.
For submultisets instead of parts on the LHS we have A371172.
For (less than) instead of (equal to) we have A371173, ranked by A371168.
Counting only distinct parts on the LHS gives A371178, ranks A371177.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[#]==Length[Union@@Divisors/@#]&]],{n,0,30}]
Previous Showing 21-30 of 91 results. Next